MAT 742 – Seminar on Hyperbolic Geometry

- ► Audience: BSc and MSc students
- Prerequisites: Topology/Geometry or Elements of Topology and Elements of Geometry

A D F A 目 F A E F A E F A Q Q

- ▶ Language: English
- ► Time: Monday 10-12
- ▶ Instructor: Yuriy Tumarkin

For about 2000 years after Euclid "geometry" meant *Euclidean* geometry, the geometry of the plane - where the sum of angles in a triangle is π .

A D F A 目 F A E F A E F A Q Q

For about 2000 years after Euclid "geometry" meant *Euclidean* geometry, the geometry of the plane - where the sum of angles in a triangle is π .

Early 1800s: other geometries can in fact exist, eg. spherical (sum of angles > π), hyperbolic (sum of angles < π).

A D F A 目 F A E F A E F A Q Q

For about 2000 years after Euclid "geometry" meant *Euclidean* geometry, the geometry of the plane - where the sum of angles in a triangle is π .

Early 1800s: other geometries can in fact exist, eg. spherical (sum of angles > π), hyperbolic (sum of angles < π).

For about 2000 years after Euclid "geometry" meant *Euclidean* geometry, the geometry of the plane - where the sum of angles in a triangle is π .

Early 1800s: other geometries can in fact exist, eg. spherical (sum of angles $> \pi$), hyperbolic (sum of angles $< \pi$).

János Bolyai:

"I have discovered such wonderful things that I was amazed ... out of nothing I have created a strange new world"

Postcard 0: Example of a hyperbolic surface

Postcard 0: Example of a hyperbolic surface

Postcard 1: Fuchsian Groups

イロト 不得下 イヨト イヨト

3

Circle Limit III M.C. Escher, 1959

Postcard 2: Geodesic and Horocycle Flows

・ロト ・ 西ト ・ モト ・ モー ・ つくぐ

Postcard 3: Teichmüller Space

