The Rearrangement Inequality

7 March 2018

Rearrangement Inequality Let (a_k) and (b_k) be finite sequences of real numbers of length n such that $a_1 \leq a_2 \leq ... \leq a_n$, $b_1 \leq b_2 \leq ... \leq b_n$. Let (B_k) be a permutation of (b_k) . Then

$$a_1b_1 + a_2b_2 + \ldots + a_nb_n \ge a_1B_1 + a_2B_2 + \ldots + a_nB_n \ge a_1b_n + a_2b_{n-1} + \ldots + a_nb_1.$$

- 1. * Prove the rearrangement inequality.
- 2. Use the rearrangement inequality to prove AM-GM.
- 3. Use the rearrangement inequality to prove Cauchy-Schwarz.
- **4.** Let $x_i, y_i (i = 1, 2, ..., n)$ be real numbers such that

$$x_1 \ge x_2 \ge \dots \ge x_n$$
 and $y_1 \ge y_2 \ge \dots \ge y_n$.

Prove that if z_1, z_2, \dots, z_n is any permutation of y_1, y_2, \dots, y_n , then

$$\sum_{i=1}^{n} (x_i - y_i)^2 \le \sum_{i=1}^{n} (x_i - z_i)^2.$$

5. Prove that for a, b, c > 0,

$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \ge \frac{a+b+c}{2}.$$

6. Let a, b, c be positive real numbers such that abc = 1. Prove that

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \ge \frac{3}{2}.$$