Inversion: Harder problems

May 2017

1. Given the circle of inversion and a point A construct its inverse A'.

2. Given two non-intersecting circles Γ_1 , Γ_2 and a point *P* outside the circles, how many circles through *P* are there that are tangent to Γ_1 and Γ_2 ? (*) Construct any of them.

3. Find the locus of the point of tangency of pairs of tangent circles inscribed in a segment.

4. Steiner Chains Prove that any two circles can be mapped to two concentric ones by a composition of inversions. Hence prove the following result:

Circle Γ_1 lies inside Γ_2 . A circle ω_0 is chosen tangent to Γ_1 (externally) and Γ_2 . A chain of circles (ω_n) is formed where circle ω_{k+1} is the circle tangent to ω_k , Γ_1 and Γ_2 . Sometimes the last circle ω_n is tangent to ω_0 , the chain is then called closed. Prove that if there is a circle ω_0 for which the chain is closed, then the chain starting with any circle S tangent to Γ_1 and Γ_2 is closed.

5. Feuerbach's Theorem Prove that the circle through the midpoints of the sides of a triangle is tangent to the incircle and the excircles of the triangle. (The circle is called the nine-point circle and has a number of remarkable properties).