# Beatty's Theorem via Cutting Sequences 

Yuriy Tumarkin

April 10th 2020

## Beatty's Theorem

## Def. (Beatty sequence)

For an irrational number $\alpha>0$, its Beatty sequence $\mathcal{B}^{\alpha}$ is given by $\mathcal{B}_{n}^{\alpha}=\lfloor n \alpha\rfloor$.

## Beatty's Theorem

## Def. (Beatty sequence)

For an irrational number $\alpha>0$, its Beatty sequence $\mathcal{B}^{\alpha}$ is given by $\mathcal{B}_{n}^{\alpha}=\lfloor n \alpha\rfloor$.

Eg. $\alpha=\sqrt{3}$


## Beatty's Theorem

## Def. (Beatty sequence)

For an irrational number $\alpha>0$, its Beatty sequence $\mathcal{B}^{\alpha}$ is given by $\mathcal{B}_{n}^{\alpha}=\lfloor n \alpha\rfloor$.

Eg. $\alpha=\sqrt{3}$


Beatty's Theorem (Rayleigh 1894, Beatty 1926)
The Beatty sequences of $\alpha$ and $\beta$ partition the positive integers if and only if $\frac{1}{\alpha}+\frac{1}{\beta}=1$.

## Cutting sequences

## Def. (Cutting sequence)

For a line $\ell$ with irrational slope $\alpha>0$, its cutting sequence $\mathcal{C}^{\alpha}$ is obtained by writing a 0 for each vertical grid line crossed by $\ell$, and a 1 for each horizontal grid line crossed.

## Cutting sequences

## Def. (Cutting sequence)

For a line $\ell$ with irrational slope $\alpha>0$, its cutting sequence $\mathcal{C}^{\alpha}$ is obtained by writing a 0 for each vertical grid line crossed by $\ell$, and a 1 for each horizontal grid line crossed.

Eg. $\alpha=\sqrt{3}$


The cutting sequence for $\sqrt{3}$ is $10110110101 \ldots$

## Cutting sequences - properties

The line of slope $\frac{1}{\alpha}$ is the reflection of the line of slope $\alpha$ in $y=x$, this reflection swaps horizontals with verticals.

## Cutting sequences - properties

The line of slope $\frac{1}{\alpha}$ is the reflection of the line of slope $\alpha$ in $y=x$, this reflection swaps horizontals with verticals. Hence:

The cutting sequences for $\alpha$ and $\frac{1}{\alpha}$ are inverse, ie. one is obtained from the other by the transformation $0 \mapsto 1,1 \mapsto 0$.

## Cutting sequences - properties

The line of slope $\frac{1}{\alpha}$ is the reflection of the line of slope $\alpha$ in $y=x$, this reflection swaps horizontals with verticals. Hence:

The cutting sequences for $\alpha$ and $\frac{1}{\alpha}$ are inverse, ie. one is obtained from the other by the transformation $0 \mapsto 1,1 \mapsto 0$.

The intersection which gives rise to the $n$th 0 in the cutting sequence has coordinates ( $n, n \alpha$ ). By this point, the line has crossed $\lfloor n \alpha\rfloor$ horizontal grid lines.

## Cutting sequences - properties

The line of slope $\frac{1}{\alpha}$ is the reflection of the line of slope $\alpha$ in $y=x$, this reflection swaps horizontals with verticals. Hence:

The cutting sequences for $\alpha$ and $\frac{1}{\alpha}$ are inverse, ie. one is obtained from the other by the transformation $0 \mapsto 1,1 \mapsto 0$.

The intersection which gives rise to the $n$th 0 in the cutting sequence has coordinates ( $n, n \alpha$ ). By this point, the line has crossed $\lfloor n \alpha\rfloor$ horizontal grid lines. Hence:
$\mathcal{B}_{n}^{\alpha}$ is given by the number of 1 s before the $n$th 0 in $\mathcal{C}^{\alpha}$.

## Cutting sequences - properties

The line of slope $\frac{1}{\alpha}$ is the reflection of the line of slope $\alpha$ in $y=x$, this reflection swaps horizontals with verticals. Hence:

The cutting sequences for $\alpha$ and $\frac{1}{\alpha}$ are inverse, ie. one is obtained from the other by the transformation $0 \mapsto 1,1 \mapsto 0$.

The intersection which gives rise to the $n$th 0 in the cutting sequence has coordinates ( $n, n \alpha$ ). By this point, the line has crossed $\lfloor n \alpha\rfloor$ horizontal grid lines. Hence:
$\mathcal{B}_{n}^{\alpha}$ is given by the number of 1 s before the $n$th 0 in $\mathcal{C}^{\alpha}$.
Eg. $\alpha=\sqrt{3}$

| $\mathcal{C}^{\sqrt{3}}$ | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{B}^{\sqrt{3}}$ |  | 1 |  |  | 3 |  |  | 5 |  | 6 | $\ldots$ |

## Proof of Beatty's Theorem

First note that

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1 \Longleftrightarrow \alpha+\beta=\alpha \beta \Longleftrightarrow(\alpha-1)(\beta-1)=1 .
$$

## Proof of Beatty's Theorem

First note that

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1 \Longleftrightarrow \alpha+\beta=\alpha \beta \Longleftrightarrow(\alpha-1)(\beta-1)=1
$$

Observation: we get $\mathcal{C}^{\alpha-1}$ from $\mathcal{C}^{\alpha}$ by removing a 1 before every 0 .

## Proof of Beatty's Theorem

First note that

$$
\frac{1}{\alpha}+\frac{1}{\beta}=1 \Longleftrightarrow \alpha+\beta=\alpha \beta \Longleftrightarrow(\alpha-1)(\beta-1)=1
$$

Observation: we get $\mathcal{C}^{\alpha-1}$ from $\mathcal{C}^{\alpha}$ by removing a 1 before every 0 . Eg. $\alpha=\sqrt{3}$ :


| $\mathcal{C}^{\sqrt{3}}$ | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{C}^{\sqrt{3}-1}$ |  | 0 | 1 |  | 0 | 1 |  | 0 |  | 0 |  |

## Proof of Beatty's Theorem

Now compare $\mathcal{B}^{\alpha}$ and $\mathcal{C}^{\alpha-1}$ :

## Proof of Beatty's Theorem

Now compare $\mathcal{B}^{\alpha}$ and $\mathcal{C}^{\alpha-1}$ :

| $\mathcal{C}^{\sqrt{3}}$ | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{C}^{\sqrt{3}-1}$ |  | 0 | 1 |  | 0 | 1 |  | 0 |  | 0 | $\ldots$ |
| $\mathcal{B}^{\sqrt{3}}$ |  | 1 |  |  | 3 |  |  | 5 |  | 6 |  |

## Proof of Beatty's Theorem

Now compare $\mathcal{B}^{\alpha}$ and $\mathcal{C}^{\alpha-1}$ :

| $\mathcal{C}^{\sqrt{3}}$ | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{C}^{\sqrt{3}-1}$ |  | 0 | 1 |  | 0 | 1 |  | 0 |  | 0 | $\ldots$ |
| $\mathcal{B}^{\sqrt{3}}$ |  | 1 |  |  | 3 |  |  | 5 |  | 6 |  |

Before the $n$th 0 in $\mathcal{C}^{\alpha}$, there were $\mathcal{B}_{n}^{\alpha} 1 \mathrm{~s}$ and $\mathrm{n}-10 \mathrm{~s}$. So the $n$th 0 of $\mathcal{C}^{\alpha}$ is in $\mathcal{B}_{n}^{\alpha}+n$th place.

## Proof of Beatty's Theorem

Now compare $\mathcal{B}^{\alpha}$ and $\mathcal{C}^{\alpha-1}$ :

| $\mathcal{C}^{\sqrt{3}}$ | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{C}^{\sqrt{3}-1}$ |  | 0 | 1 |  | 0 | 1 |  | 0 |  | 0 | $\ldots$ |
| $\mathcal{B}^{\sqrt{3}}$ |  | 1 |  |  | 3 |  |  | 5 |  | 6 |  |

Before the $n$th 0 in $\mathcal{C}^{\alpha}$, there were $\mathcal{B}_{n}^{\alpha} 1 \mathrm{~s}$ and $\mathrm{n}-10 \mathrm{~s}$. So the $n$th 0 of $\mathcal{C}^{\alpha}$ is in $\mathcal{B}_{n}^{\alpha}+n$th place.
So if we remove n 1 s before this 0 , we get:
$\mathcal{B}^{\alpha}$ is given by the positions of 0 s in $\mathcal{C}^{\alpha-1}$.

## Proof of Beatty's Theorem

Now compare $\mathcal{B}^{\alpha}$ and $\mathcal{C}^{\alpha-1}$ :

| $\mathcal{C}^{\sqrt{3}}$ | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{C}^{\sqrt{3}-1}$ |  | 0 | 1 |  | 0 | 1 |  | 0 |  | 0 | $\ldots$ |
| $\mathcal{B}^{\sqrt{3}}$ |  | 1 |  |  | 3 |  |  | 5 |  | 6 |  |

Before the $n$th 0 in $\mathcal{C}^{\alpha}$, there were $\mathcal{B}_{n}^{\alpha} 1 \mathrm{~s}$ and $\mathrm{n}-10 \mathrm{~s}$. So the $n$th 0 of $\mathcal{C}^{\alpha}$ is in $\mathcal{B}_{n}^{\alpha}+n$th place.
So if we remove n 1 s before this 0 , we get:
$\mathcal{B}^{\alpha}$ is given by the positions of 0 s in $\mathcal{C}^{\alpha-1}$.
And so
$\mathcal{B}^{\alpha}, \mathcal{B}^{\beta}$ partition $\mathbb{N} \Longleftrightarrow \mathcal{C}^{\alpha-1}$ and $\mathcal{C}^{\beta-1}$ are inverse

$$
\begin{aligned}
& \Longleftrightarrow(\alpha-1)(\beta-1)=1 \\
& \Longleftrightarrow \frac{1}{\alpha}+\frac{1}{\beta}=1
\end{aligned}
$$

## Cutting sequence for $\frac{1}{\varphi}$



The cutting sequence for $\frac{1}{\varphi}$ is $0100101001001 \ldots$

## Cutting sequence for $\frac{1}{\varphi}$



The cutting sequence for $\frac{1}{\varphi}$ is $0100101001001 \ldots$
We have $\frac{1}{\varphi}=\frac{1}{1+\frac{1}{\varphi}}$.

## Cutting sequence for $\frac{1}{\varphi}$



The cutting sequence for $\frac{1}{\varphi}$ is $0100101001001 \ldots$
We have $\frac{1}{\varphi}=\frac{1}{1+\frac{1}{\varphi}}$.
To get from $\mathcal{C}^{\frac{1}{\varphi}}$ to $\mathcal{C}^{1+\frac{1}{\varphi}}$, we add a 1 before each $0,0 \mapsto 10,1 \mapsto 1$.
To get to $\mathcal{C}^{\frac{1}{1+\frac{1}{\varphi}}}$, we invert, $0 \mapsto 1,1 \mapsto 0$.

## Cutting sequence for $\frac{1}{\varphi}$



The cutting sequence for $\frac{1}{\varphi}$ is $0100101001001 \ldots$
We have $\frac{1}{\varphi}=\frac{1}{1+\frac{1}{\varphi}}$.
To get from $\mathcal{C}^{\frac{1}{\varphi}}$ to $\mathcal{C}^{1+\frac{1}{\varphi}}$, we add a 1 before each $0,0 \mapsto 10,1 \mapsto 1$.
To get to $\mathcal{C}^{\frac{1}{1+\frac{1}{\varphi}}}$, we invert, $0 \mapsto 1,1 \mapsto 0$.
So $\mathcal{C}^{\frac{1}{\varphi}}$ is invariant under:

$$
\begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 0
\end{aligned}
$$

## The Fibonacci Word

The 0th Fibonacci word, $S_{0}$, is 0 .
$S_{n}$ is obtained from $S_{n-1}$ by the substitution

$$
\begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 0
\end{aligned}
$$

## The Fibonacci Word

The 0th Fibonacci word, $S_{0}$, is 0 .
$S_{n}$ is obtained from $S_{n-1}$ by the substitution

$$
\begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 0
\end{aligned}
$$

$\begin{array}{ll}S_{0} & 0 \\ S_{1} & 01 \\ S_{2} & 010 \\ S_{3} & 01001 \\ S_{4} & 01001010 \\ S_{5} & 0100101001001\end{array}$

## The Fibonacci Word

The 0th Fibonacci word, $S_{0}$, is 0 .
$S_{n}$ is obtained from $S_{n-1}$ by the substitution

$$
\begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 0
\end{aligned}
$$

$S_{0} 0$
$S_{1} 01$
$S_{2} 010$
$S_{3} 01001$
$S_{4} 01001010$
$S_{5} 0100101001001$
The limiting infinite Fibonacci word $S_{\infty}$ is $\mathcal{C}^{\frac{1}{\varphi}}$.

## The Fibonacci Word

The 0th Fibonacci word, $S_{0}$, is 0 .
$S_{n}$ is obtained from $S_{n-1}$ by the substitution

$$
\begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 0
\end{aligned}
$$

$S_{0} 0$
$S_{1} 01$
$S_{2} 010$
$S_{3} 01001$
$S_{4} 01001010$
$S_{5} 0100101001001$
The limiting infinite Fibonacci word $S_{\infty}$ is $\mathcal{C}^{\frac{1}{\varphi}}$.
By induction, $S_{n+1}=S_{n} S_{n-1}$, and $S_{n}$ contains $F_{n} 1 \mathrm{~s}, F_{n+1} 0 \mathrm{~s}$.

## Wythoff's game

The game is played by two people. There are two piles of stones. Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

## Wythoff's game

The game is played by two people. There are two piles of stones. Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

Who wins, depending on the initial number of stones in each pile?

## Wythoff's game

The game is played by two people. There are two piles of stones. Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

Who wins, depending on the initial number of stones in each pile? Colour losing positions red, winning positions blue:

## Wythoff's game

The game is played by two people. There are two piles of stones.
Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

Who wins, depending on the initial number of stones in each pile? Colour losing positions red, winning positions blue:


## Wythoff's game

The game is played by two people. There are two piles of stones.
Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

Who wins, depending on the initial number of stones in each pile? Colour losing positions red, winning positions blue:


## Wythoff's game

The game is played by two people. There are two piles of stones.
Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

Who wins, depending on the initial number of stones in each pile? Colour losing positions red, winning positions blue:


## Wythoff's game

The game is played by two people. There are two piles of stones.
Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

Who wins, depending on the initial number of stones in each pile? Colour losing positions red, winning positions blue:


## Wythoff's game

The game is played by two people. There are two piles of stones.
Each go, you can take any number of stones from a single pile, or an equal number from both. The person that takes the last stone wins.

Who wins, depending on the initial number of stones in each pile? Colour losing positions red, winning positions blue:


## Wythoff's game

The coordinates of the losing positions (with $x \leq y$ ) are $(0,0),(1,2)$, $(3,5),(4,7),(6,10),(8,13)$.

## Wythoff's game

The coordinates of the losing positions (with $x \leq y$ ) are $(0,0),(1,2)$, $(3,5),(4,7),(6,10),(8,13)$.

Define the Lower Wythoff sequence $\left(L_{n}\right)$ as the $x$-coordinates of these losing positions, the Upper Wythoff sequence $\left(U_{n}\right)$ as the y-coordinates.

## Wythoff's game

The coordinates of the losing positions (with $x \leq y$ ) are $(0,0),(1,2)$, $(3,5),(4,7),(6,10),(8,13)$.

Define the Lower Wythoff sequence $\left(L_{n}\right)$ as the $x$-coordinates of these losing positions, the Upper Wythoff sequence $\left(U_{n}\right)$ as the $y$-coordinates.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $L_{n}$ | 0 | 1 | 3 | 4 | 6 | 8 |
| $U_{n}$ | 0 | 2 | 5 | 7 | 10 | 13 |

## Wythoff's game

The coordinates of the losing positions (with $x \leq y$ ) are $(0,0),(1,2)$, $(3,5),(4,7),(6,10),(8,13)$.

Define the Lower Wythoff sequence $\left(L_{n}\right)$ as the $x$-coordinates of these losing positions, the Upper Wythoff sequence $\left(U_{n}\right)$ as the $y$-coordinates.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $L_{n}$ | 0 | 1 | 3 | 4 | 6 | 8 |
| $U_{n}$ | 0 | 2 | 5 | 7 | 10 | 13 |

We can also construct the sequences as follows:

- $L_{n}$ is the lowest positive integer that hasn't appeared in either $\left(L_{n}\right)$ or $\left(U_{n}\right)$ yet.
- $U_{n}=L_{n}+n$.


## Wythoff's game

Now consider the Beatty sequences of $\varphi$ and $\varphi^{2}$.

## Wythoff's game

Now consider the Beatty sequences of $\varphi$ and $\varphi^{2}$. Since $\frac{1}{\varphi}+\frac{1}{\varphi^{2}}=1$, they partition $\mathbb{N}$.

## Wythoff's game

Now consider the Beatty sequences of $\varphi$ and $\varphi^{2}$. Since $\frac{1}{\varphi}+\frac{1}{\varphi^{2}}=1$, they partition $\mathbb{N}$.
And as $\varphi^{2}=\varphi+1,\left\lfloor n \varphi^{2}\right\rfloor=\lfloor n \varphi\rfloor+n$.

## Wythoff's game

Now consider the Beatty sequences of $\varphi$ and $\varphi^{2}$.
Since $\frac{1}{\varphi}+\frac{1}{\varphi^{2}}=1$, they partition $\mathbb{N}$.
And as $\varphi^{2}=\varphi+1,\left\lfloor n \varphi^{2}\right\rfloor=\lfloor n \varphi\rfloor+n$.
So we can construct te Beatty sequences in the same way as the Wythoff sequences:

- $\mathcal{B}_{n}^{\varphi}$ is the lowest positive integer that hasn't appeared in either $\mathcal{B}^{\varphi}$ or $\mathcal{B}^{\varphi^{2}}$ yet.
- $\mathcal{B}_{n}^{\varphi^{2}}=\mathcal{B}_{n}^{\varphi}+n$


## Wythoff's game

Now consider the Beatty sequences of $\varphi$ and $\varphi^{2}$.
Since $\frac{1}{\varphi}+\frac{1}{\varphi^{2}}=1$, they partition $\mathbb{N}$.
And as $\varphi^{2}=\varphi+1,\left\lfloor n \varphi^{2}\right\rfloor=\lfloor n \varphi\rfloor+n$.
So we can construct te Beatty sequences in the same way as the Wythoff sequences:

- $\mathcal{B}_{n}^{\varphi}$ is the lowest positive integer that hasn't appeared in either $\mathcal{B}^{\varphi}$ or $\mathcal{B}^{\varphi^{2}}$ yet.
- $\mathcal{B}_{n}^{\varphi^{2}}=\mathcal{B}_{n}^{\varphi}+n$

So, since $L_{1}=1=\mathcal{B}_{1}^{\varphi}$,

## Wythoff's game

Now consider the Beatty sequences of $\varphi$ and $\varphi^{2}$.
Since $\frac{1}{\varphi}+\frac{1}{\varphi^{2}}=1$, they partition $\mathbb{N}$.
And as $\varphi^{2}=\varphi+1,\left\lfloor n \varphi^{2}\right\rfloor=\lfloor n \varphi\rfloor+n$.
So we can construct te Beatty sequences in the same way as the Wythoff sequences:

- $\mathcal{B}_{n}^{\varphi}$ is the lowest positive integer that hasn't appeared in either $\mathcal{B}^{\varphi}$ or $\mathcal{B}^{\varphi^{2}}$ yet.
- $\mathcal{B}_{n}^{\varphi^{2}}=\mathcal{B}_{n}^{\varphi}+n$

So, since $L_{1}=1=\mathcal{B}_{1}^{\varphi}$,

$$
\begin{aligned}
L_{n} & =\mathcal{B}_{n}^{\varphi}=\lfloor n \varphi\rfloor \\
U_{n} & =\mathcal{B}_{n}^{\varphi^{2}}=\left\lfloor n \varphi^{2}\right\rfloor .
\end{aligned}
$$

## Bibliography

Serge Tabachnikov, Geometry and Billiards, American Mathematical Society, 2005.

