What is ... a translation surface?

Yuriy Tumarkin

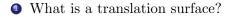
Zurich Graduate Colloquium 16th April 2024

Yuriy Tumarkin

What is ... a translation surface?

ZGC 16/04/24

3 1 4 3 1



イロト イヨト イヨト イヨト

- What is a translation surface?
- **2** Where do they live?

- What is a translation surface?
- Where do they live? (On a moduli space)

< 1 > <

3 × 4 3 ×

- What is a translation surface?
- Where do they live? (On a moduli space)
- **③** What can you do with it?

< 🗇 🕨 🔸

3 1 4 3 1

- What is a translation surface?
- Where do they live? (On a moduli space)
- **③** What can you do with it? (Dynamics)

< 🗇 🕨 🔸

→ ∃→

- What is a translation surface?
- ² Where do they live? (On a moduli space)
- What can you do with it? (Dynamics)
- It was the study the dynamics?

< 🗇 🕨

A 3 >

- What is a translation surface?
- 2 Where do they live? (On a moduli space)
- What can you do with it? (Dynamics) 3
- How do you study the dynamics? (By renormalisation) 4

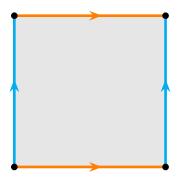
< 🗇 🕨 🔸

→ Ξ →

What is a translation surface?

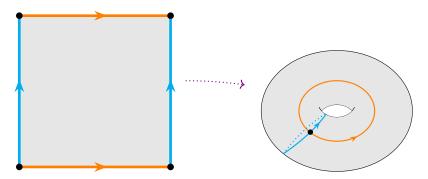
First example: the flat torus

Glue the opposite sides of a square:



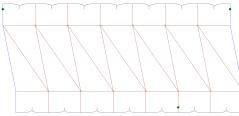
First example: the flat torus

Glue the opposite sides of a square:



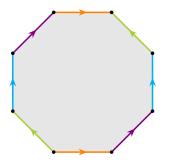
Aside: diplotori

Alba Málaga, Samuel Lelièvre, Pierre Arnoux The usual embedding of a torus in \mathbb{R}^3 is not flat, but it is in fact possible to fold a torus out of paper:



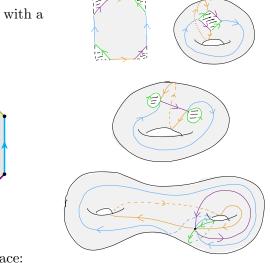
Higher genus translation surfaces

Now suppose we start with a regular octagon:



Higher genus translation surfaces

Now suppose we start with a regular octagon:



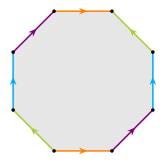
We get a genus 2 surface:

э

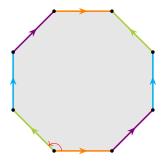
6/36

・ロト ・四ト ・ヨト ・ヨト

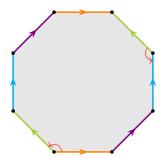
Trace a small loop around the image of one vertex of the octagon:



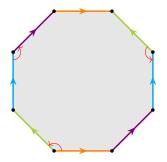
Trace a small loop around the image of one vertex of the octagon:



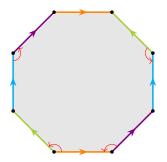
Trace a small loop around the image of one vertex of the octagon:



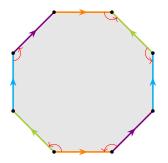
Trace a small loop around the image of one vertex of the octagon:



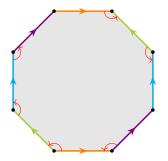
Trace a small loop around the image of one vertex of the octagon:



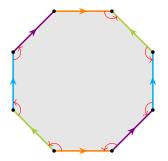
Trace a small loop around the image of one vertex of the octagon:



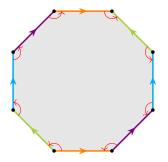
Trace a small loop around the image of one vertex of the octagon:



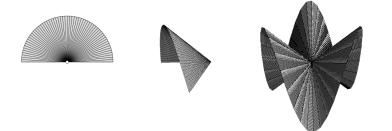
Trace a small loop around the image of one vertex of the octagon:



Trace a small loop around the image of one vertex of the octagon:



All the vertices are glued together, so the resulting angle there is $8 \times \frac{3}{4}\pi = 6\pi$.



[Picture: Zorich]

Definition of translation surface

Definition

A translation surface is a space obtained by identifying pairwise all the edges of a collection of polygons $\{P_1, P_2, ...\}$ in \mathbb{R}^2 , where for each pair (a_i, b_i) of identified edges,

- a_i and b_i are parallel and have the same length.
- a_i and b_i are on opposite sides of their respective polygons (where the boundaries of the P_i are all oriented counter-clockwise).

Definition of translation surface

Definition

A translation surface is a space obtained by identifying pairwise all the edges of a collection of polygons $\{P_1, P_2, ...\}$ in \mathbb{R}^2 , where for each pair (a_i, b_i) of identified edges,

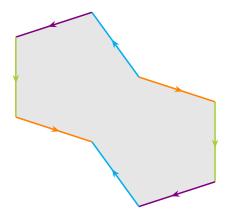
- a_i and b_i are parallel and have the same length.
- a_i and b_i are on opposite sides of their respective polygons (where the boundaries of the P_i are all oriented counter-clockwise).

Removing the singularities, a translation surface is a surface with charts such that all transition functions are translations - hence the name.

The cone angle at each singularity is always an integer multiple of 2π .

メロト メタト メヨト メヨト

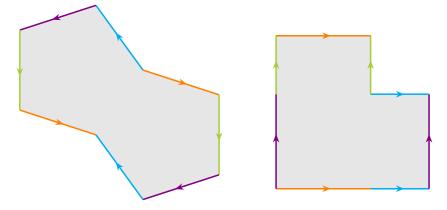
Double pentagon



< 🗇 > <

(○) → (○)

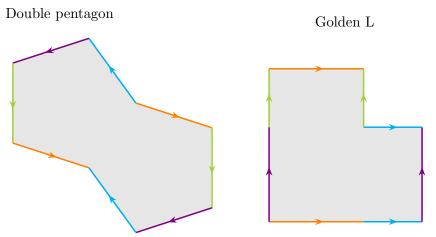
Double pentagon



4 (B) > 4

ъ

- ∢ ≣ →

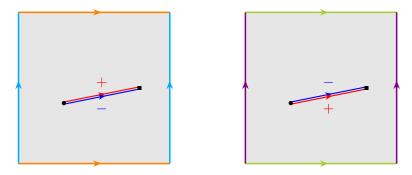


Both surfaces have genus 2, one singularity with angle 6π – same topology as the regular octagon.

ZGC 16/04/24

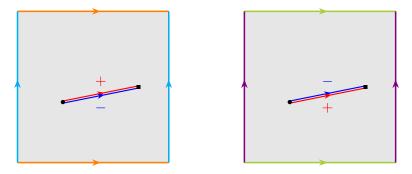
B b

Doubled slit torus



イロト イヨト イヨト イヨト

Doubled slit torus

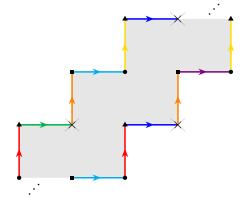


Also genus 2, but with two singularities, each of angle 4π .

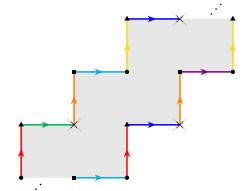
< 🗇 🕨

A 3 b

Infinite staircase



Infinite staircase



Infinite genus, four wild singularities (infinite cone angle).

Yuriy Tumarkin

→ ∃→

Where do translation surfaces live?

イロト イヨト イヨト イヨト

Different shapes of tori

The following two tori are topologically the same, but have different metrics:

A 3 >

ъ

Different shapes of tori

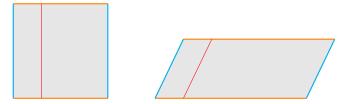
The following two tori are topologically the same, but have different metrics:

How do we know they're different? The shortest closed curve is shorter on the right torus.

→

Different shapes of tori

The following two tori are topologically the same, but have different metrics:

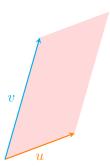


How do we know they're different? The shortest closed curve is shorter on the right torus.

- E - D

Want to classify flat tori up to scaling and rotation.

Want to classify flat tori up to scaling and rotation. A torus is defined by two vectors $u, v \in \mathbb{C}$ spanning the parallelogram.



Want to classify flat tori up to scaling and rotation.

A torus is defined by two vectors $u, v \in \mathbb{C}$ spanning the parallelogram.

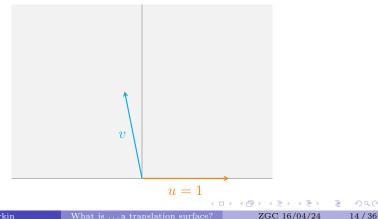
• Up to scaling and rotation can assume u = 1.

14/36

Want to classify flat tori up to scaling and rotation.

A torus is defined by two vectors $u, v \in \mathbb{C}$ spanning the parallelogram.

- Up to scaling and rotation can assume u = 1.
- Then v can be anywhere in the upper half-plane.



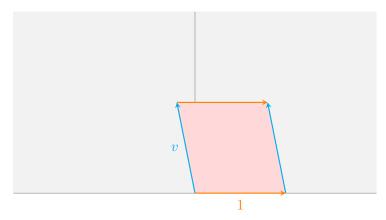
What choices of v give the same torus?

イロト イヨト イヨト イヨト

ъ

What choices of v give the same torus?

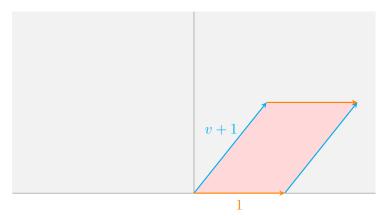
• v and v + 1:



<回と < 回と < 回と

What choices of v give the same torus?

• v and v + 1:

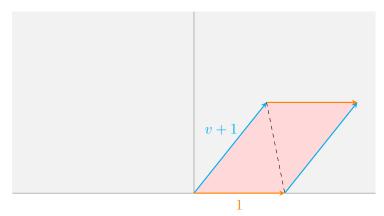


・ 回 ト ・ ヨ ト ・ ヨ ト

ъ

What choices of v give the same torus?

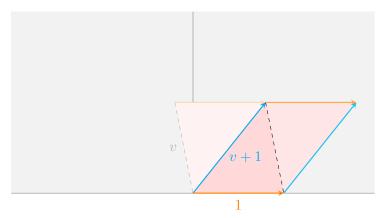
• v and v + 1:



<回と < 回と < 回と

What choices of v give the same torus?

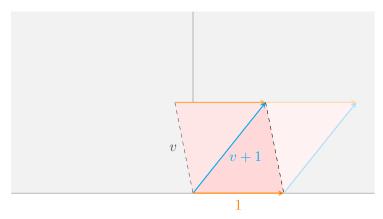
```
• v and v + 1:
```



・ 回 ト ・ ヨ ト ・ ヨ ト

What choices of v give the same torus?

```
• v and v + 1:
```

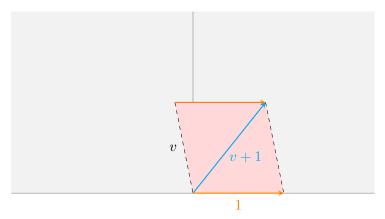


ъ

・ 回 ト ・ ヨ ト ・ ヨ ト

What choices of v give the same torus?

```
• v and v + 1:
```



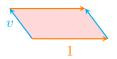
What choices of v give the same torus?

イロト イヨト イヨト イヨト

ъ

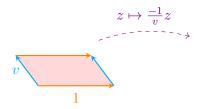
What choices of v give the same torus?

 $2 v \text{ and } \frac{-1}{v}$:



What choices of v give the same torus?

 $2 v \text{ and } \frac{-1}{v}$:



What choices of v give the same torus?

• v and $\frac{-1}{v}$: $z \mapsto \frac{-1}{v} z$ v 1-1

ъ

What choices of v give the same torus?

• $v \text{ and } \frac{-1}{v}$: $z \mapsto \frac{-1}{v} z$ v 11

ъ

What choices of v give the same torus?

• $v \text{ and } \frac{-1}{v}$: $z \mapsto \frac{-1}{v} z$ v 11

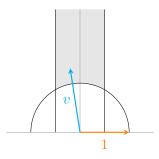
Up to rotation and scaling, same torus.

• Using (1): $v \sim v + 1$, can always pick v such that $|\operatorname{Re}(v)| \leq \frac{1}{2}$.

- Using (1): $v \sim v + 1$, can always pick v such that $|\operatorname{Re}(v)| \leq \frac{1}{2}$.
- Using (2): $v \sim \frac{-1}{v}$ can assume u is shorter than v, i.e. $|v| \ge 1$.

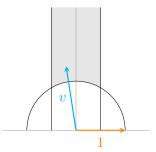
- Using (1): $v \sim v + 1$, can always pick v such that $|\operatorname{Re}(v)| \leq \frac{1}{2}$.
- Using (2): $v \sim \frac{-1}{v}$ can assume u is shorter than v, i.e. $|v| \ge 1$.

Thus: any torus can be uniquely given by a choice of v in the shaded region, the **moduli space** of flat tori:



- Using (1): $v \sim v + 1$, can always pick v such that $|\operatorname{Re}(v)| \leq \frac{1}{2}$.
- Using (2): $v \sim \frac{-1}{v}$ can assume u is shorter than v, i.e. $|v| \ge 1$.

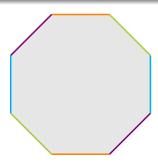
Thus: any torus can be uniquely given by a choice of v in the shaded region, the **moduli space** of flat tori:



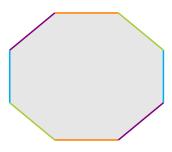
There is a similar moduli space for translation surfaces of any genus.

Definition

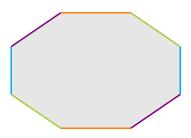
Definition



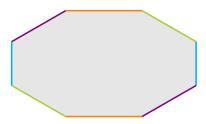
Definition



Definition



Definition



What can you do with a translation surface?

프 🖌 🛪 프 🕨

æ

Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

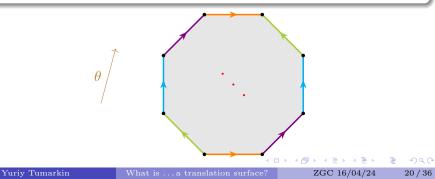
ъ

Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition

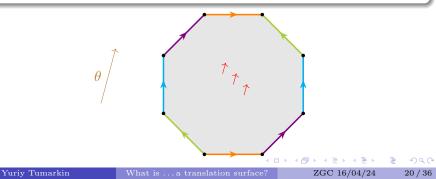
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



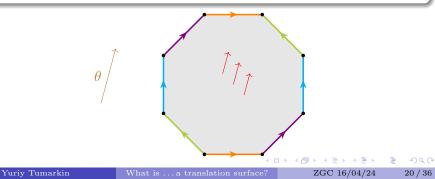
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



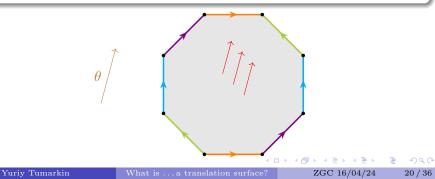
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



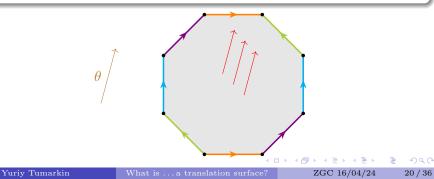
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



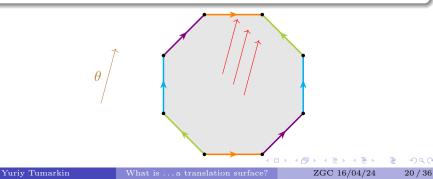
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



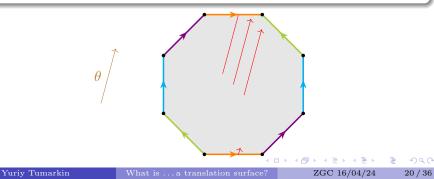
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



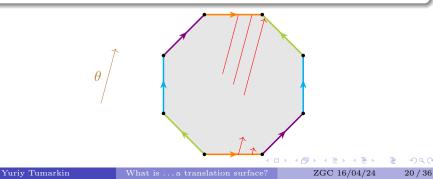
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



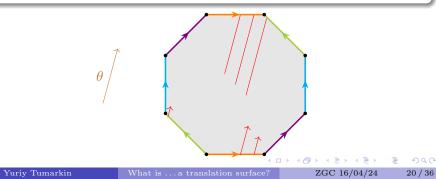
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



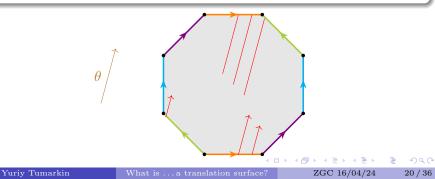
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



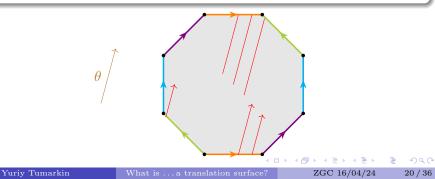
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



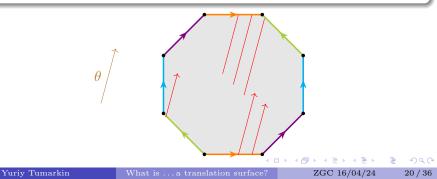
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



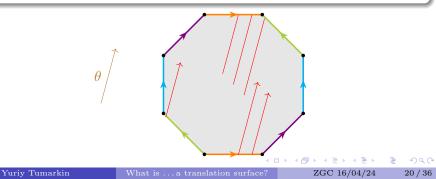
Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition

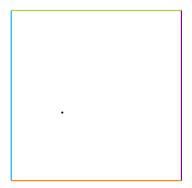


Always glue by translations \implies well-defined notion of direction: can put a compass everywhere on the surface and it will show which way is north.

Definition



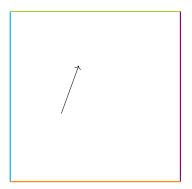
Consider the billiard in a square:



< 🗇 🕨 🔸

3 1 4 3 1

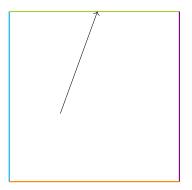
Consider the billiard in a square:



< 1 > <

3 1 4 3 1

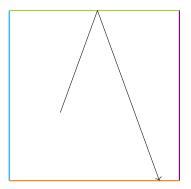
Consider the billiard in a square:



< 🗇 🕨 🔸

→ ∃→

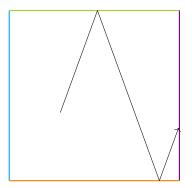
Consider the billiard in a square:



< 🗇 🕨 🔸

3 1 4 3 1

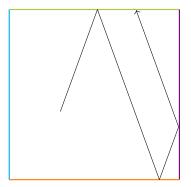
Consider the billiard in a square:



< 🗇 🕨 🔸

→ ∃→

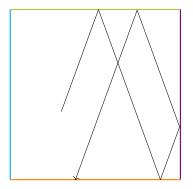
Consider the billiard in a square:



< 🗇 🕨 🔸

→ ∃→

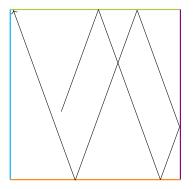
Consider the billiard in a square:



< 🗇 🕨 🔸

→ ∃→

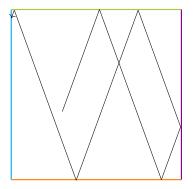
Consider the billiard in a square:



< (17) > <

→ ∃→

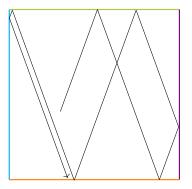
Consider the billiard in a square:



< (17) > <

→ ∃→

Consider the billiard in a square:



< 1 > <

→ ∃→

Instead of reflecting the trajectory, reflect the billiard table:

Instead of reflecting the trajectory, reflect the billiard table:

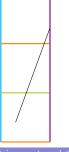
Yuriy Tumarkin

ZGC 16/04/24

Instead of reflecting the trajectory, reflect the billiard table:

Yuriy Tumarkin

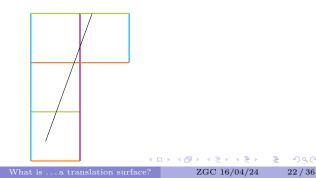
Instead of reflecting the trajectory, reflect the billiard table:



Yuriy Tumarkin

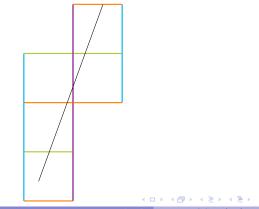
e? ZGC

Instead of reflecting the trajectory, reflect the billiard table:



Yuriy Tumarkin

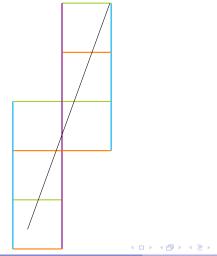
Instead of reflecting the trajectory, reflect the billiard table:



Yuriy Tumarkin

22/36

Instead of reflecting the trajectory, reflect the billiard table:

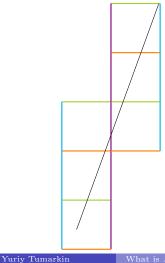


Yuriy Tumarkin

ZGC 16/04/24

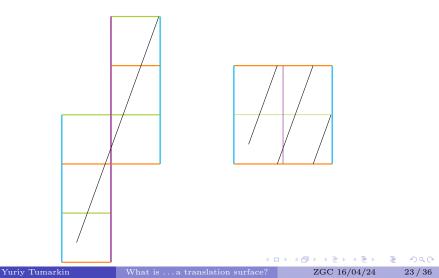
Now identify the squares with the same orientation:

Now identify the squares with the same orientation:

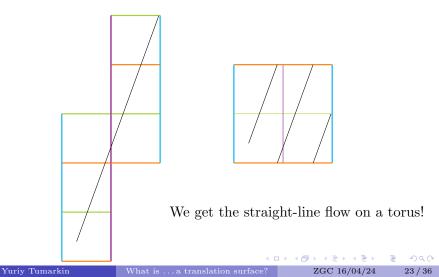


3 1 4 3 1

Now identify the squares with the same orientation:



Now identify the squares with the same orientation:

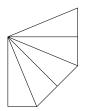


Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)

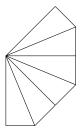
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)

Example for the octagon: triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}, \frac{3\pi}{8}$

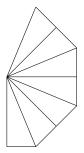
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction) Example for the octagon: triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}, \frac{3\pi}{8}$



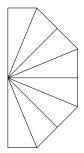
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction) Example for the actagon: triangle with angles π π $^{3\pi}$



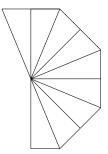
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



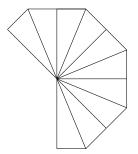
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



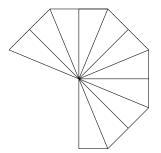
Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)



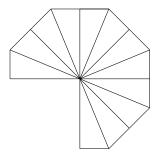
Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)



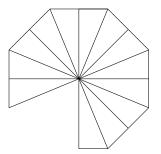
Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)



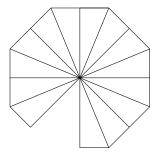
Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)



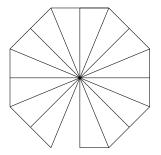
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



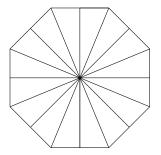
Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)



Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)

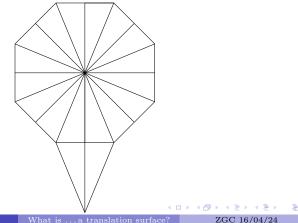


Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)

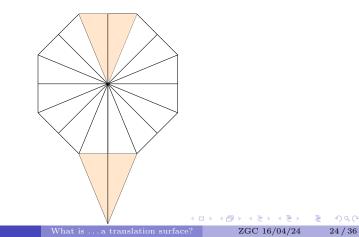
Example for the octagon: triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}, \frac{3\pi}{8}$



24/36

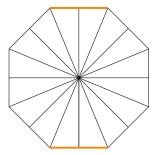
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)

Example for the octagon: triangle with angles $\frac{\pi}{2}, \frac{\pi}{8}, \frac{3\pi}{8}$

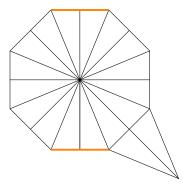


Yuriy Tumarkin

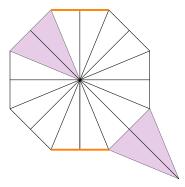
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



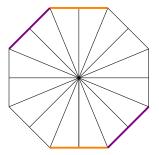
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



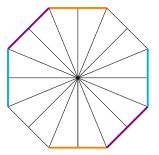
Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



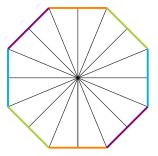
Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)



Can do this for any billiard table *with rational angles*. (Katok – Zemlyakov construction)



Can do this for any billiard table with rational angles. (Katok – Zemlyakov construction)



How do you study the dynamics?

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

3

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

• Are there any fixed points?

< (T) > <

3 1 4 3 1

3

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

• Are there any fixed points? For straight-line flow: no.

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

- Are there any fixed points? For straight-line flow: no.
- Are there any periodic orbits?

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

- Are there any fixed points? For straight-line flow: no.
- **2** Are there any periodic orbits? For straight-line flow: usually no.

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

- Are there any fixed points? For straight-line flow: no.
- **2** Are there any periodic orbits? For straight-line flow: usually no.
- **③** What are the invariant sets?

-

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

- Are there any fixed points? For straight-line flow: no.
- **2** Are there any periodic orbits? For straight-line flow: usually no.
- **③** What are the invariant sets?

Definition

Let $T: X \to X$ be a dynamical system. A measure μ on X is invariant if for any measurable set $B \subset X$, $\mu(T^{-1}(X)) = \mu(X)$.

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

- Are there any fixed points? For straight-line flow: no.
- **2** Are there any periodic orbits? For straight-line flow: usually no.
- **③** What are the invariant sets?

Definition

Let $T: X \to X$ be a dynamical system. A measure μ on X is **invariant** if for any measurable set $B \subset X$, $\mu(T^{-1}(X)) = \mu(X)$. An invariant measure μ is **ergodic** if all invariant sets B have $\mu(B) = 0$ or $\mu(X \setminus B) = 0$.

3

To understand a dynamical system $T: X \to X$, the first question is: what does it preserve?

- Are there any fixed points? For straight-line flow: no.
- **2** Are there any periodic orbits? For straight-line flow: usually no.
- **③** What are the invariant sets?

Definition

Let $T: X \to X$ be a dynamical system. A measure μ on X is **invariant** if for any measurable set $B \subset X$, $\mu(T^{-1}(X)) = \mu(X)$. An invariant measure μ is **ergodic** if all invariant sets B have $\mu(B) = 0$ or $\mu(X \setminus B) = 0$.

Ergodicity means "as seen by μ , the dynamics doesn't decompose".

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Unique ergodicity

A slightly finer question than finding invariant sets is:

• What are the invariant measures?

Unique ergodicity

A slightly finer question than finding invariant sets is:

What are the invariant measures?

Definition

 $T: X \to X$ is **uniquely ergodic** if it has only one invariant measure.

A 3 >

Unique ergodicity

A slightly finer question than finding invariant sets is:

What are the invariant measures?

Definition

 $T: X \to X$ is **uniquely ergodic** if it has only one invariant measure.

Unique ergodicity means "the dynamics does not decompose".

Unique ergodicity for periodic type

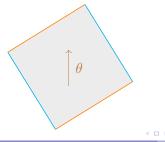
Consider the straight-line flow on a translation surface in direction θ .

Yuriy Tumarkin

28/36

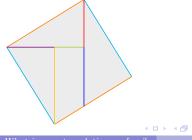
Unique ergodicity for periodic type

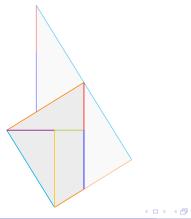
Consider the straight-line flow on a translation surface in direction θ . We can rotate the surface so that the flow is vertically upwards.

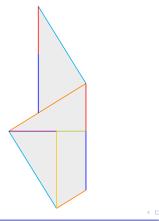


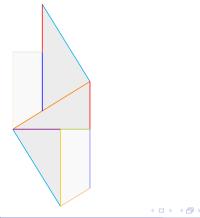
Unique ergodicity for periodic type

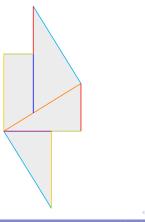
Consider the straight-line flow on a translation surface in direction θ . We can rotate the surface so that the flow is vertically upwards. Cut and paste to make the surface out of rectangles:

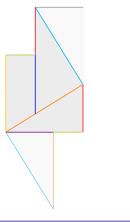


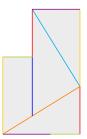




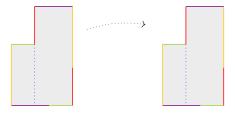


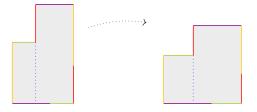




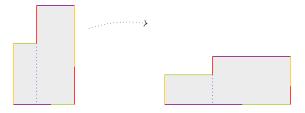


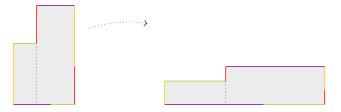


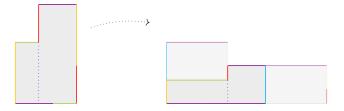


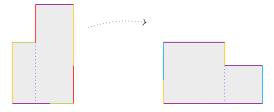


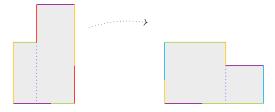


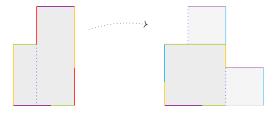


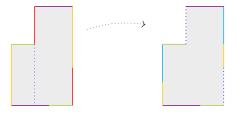


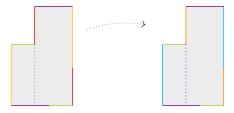








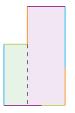




Going backwards, this allows us to divide the surface into thinner strips:

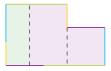
ъ

Going backwards, this allows us to divide the surface into thinner strips:



Going backwards, this allows us to divide the surface into thinner strips:

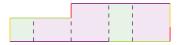
Going backwards, this allows us to divide the surface into thinner strips:



Going backwards, this allows us to divide the surface into thinner strips:

モル

Going backwards, this allows us to divide the surface into thinner strips:



• 3 >

ъ

Going backwards, this allows us to divide the surface into thinner strips:

3) 3

Going backwards, this allows us to divide the surface into thinner strips:

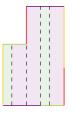
		1	1	
		1	1	
		1	1	
1		1	1	
1	1	1	1	
1	1	1	1	
1	1	1	1	
			1	

э

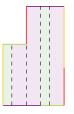
Going backwards, this allows us to divide the surface into thinner strips:

∃ >

Going backwards, this allows us to divide the surface into thinner strips:



Going backwards, this allows us to divide the surface into thinner strips:



If μ is an invariant measure, then the μ -width of each strip is constant as one moves vertically along the strip.

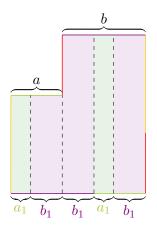
Going backwards, this allows us to divide the surface into thinner strips:

If μ is an invariant measure, then the μ -width of each strip is constant as one moves vertically along the strip.

The green strips came from one strip, so have the same μ -width a_1 . Similarly the purple strips all have the same μ -width b_1 .

Let a, b be the widths of the initial rectangles:

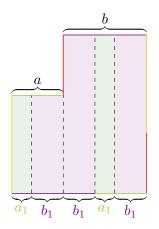
Let a, b be the widths of the initial rectangles:



How do you study the dynamics?

Unique ergodicity for periodic type

Let a, b be the widths of the initial rectangles:



Conclude:

 $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}.$

• 3 >

Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

3 1 4 3 1

Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

Two steps of flow and cutting/re-gluing gives thinner strips of widths a_2, b_2 , and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^2 \begin{pmatrix} a_2 \\ b_2 \end{pmatrix}.$$

Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

n steps of flow and cutting/re-gluing gives thinner strips of widths $a_n, b_n,$ and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$

Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

n steps of flow and cutting/re-gluing gives thinner strips of widths a_n, b_n , and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$

So for any
$$n$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \in \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$.

Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

n steps of flow and cutting/re-gluing gives thinner strips of widths a_n, b_n , and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$

But widths have to be non-negative!

So for any
$$n$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \in \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$.

 \mathbb{R}^2_{\perp}

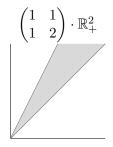
32/36

Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

n steps of flow and cutting/re-gluing gives thinner strips of widths a_n, b_n , and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$

So for any
$$n$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \in \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$.

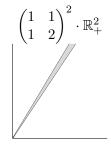


Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

n steps of flow and cutting/re-gluing gives thinner strips of widths a_n, b_n , and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \begin{pmatrix} a_n \\ b_n \end{pmatrix}.$$

So for any
$$n$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \in \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$.

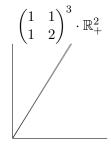


Key step: since surface is periodic under Teichmüller geodesic flow, we can do the same thing again!

n steps of flow and cutting/re-gluing gives thinner strips of widths a_n, b_n , and

$$\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \begin{pmatrix} a_n \\ b_n \end{pmatrix}.$$

So for any
$$n$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \in \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$.



Since

$$\bigcap_{n\geq 1} \begin{pmatrix} 1 & 1\\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$$

is a line, there is a unique possible ratio for $\frac{b}{a}$.

프 🖌 🛛 프

Since

$$\bigcap_{n\geq 1} \begin{pmatrix} 1 & 1\\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$$

is a line, there is a unique possible ratio for $\frac{b}{a}$.

From a, b we can determine a_n, b_n by

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-n} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Yuriy Tumarkin

Since

$$\bigcap_{n\geq 1} \begin{pmatrix} 1 & 1\\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$$

is a line, there is a unique possible ratio for $\frac{b}{a}$.

From a, b we can determine a_n, b_n by

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-n} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Can approximate any strip using a_n, b_n with large n, hence can determine μ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Since

$$\bigcap_{n\geq 1} \begin{pmatrix} 1 & 1\\ 1 & 2 \end{pmatrix}^n \cdot \mathbb{R}^2_+$$

is a line, there is a unique possible ratio for $\frac{b}{a}$.

From a, b we can determine a_n, b_n by

$$\begin{pmatrix} a_n \\ b_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-n} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Can approximate any strip using a_n, b_n with large n, hence can determine μ .

Thus (up to scaling) there is a unique invariant measure for the vertical flow, so it is uniquely ergodic.

Yuriy Tumarkin

In general need to use:

Theorem (Perron-Frobenius theorem)

The top eigenvalue of any positive matrix is simple.

3 1 4 3 1

In general need to use:

Theorem (Perron-Frobenius theorem)

The top eigenvalue of any positive matrix is simple.

To prove:

Theorem

If S is a translation surface that is periodic under Teichmüller geodesic flow, then the vertical straight-line flow on S is uniquely ergodic. The unique invariant measure is Lebesgue.

Stronger results

Theorem (Masur's criterion, Howard Masur '82)

If the surface S returns to some compact set infinitely many times under Teichmüller geodesic flow, then the vertical flow on S is uniquely ergodic.

→ ∃→

Stronger results

Theorem (Masur's criterion, Howard Masur '82)

If the surface S returns to some compact set infinitely many times under Teichmüller geodesic flow, then the vertical flow on S is uniquely ergodic.

Theorem (Kerckhoff, Masur, Smillie '86)

For any translation surface S, for almost any direction θ , the straight-line flow in direction θ is uniquely ergodic.

Thanks for your attention!

프 🖌 🛪 프 🕨

2