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0 Introduction

This essay is an exposition of a few of the main results concerning the actions of groups on trees, following
Serre’s book [4]. In chapter 1 we consider free actions and prove that only free groups act freely on trees.
From this one can directly deduce Schreier’s theorem, that any subgroup of a free group is free.

The second part of the essay (chapters 2 and 3) is a presentation of Bass-Serre theory, which links the structure
of a group with its actions on trees. Namely, an action of a group G on a tree X defines a decomposition
of G called a graph of groups, (G, Y ). Conversely, from a graph of groups (G, Y ) we can define a group π
(called the fundamental group) and a tree X̃ on which π acts. The main result is the statement that these two
constructions are inverse to each other, i.e. that a decomposition into a graph of groups uniquely corresponds
to an action on a tree. This correspondence then gives a structure theorem for all groups acting on trees.

1 Free actions

1.1 Graphs

Before considering group actions on graphs we need to define what we mean by a graph. We will use Serre’s
formalism, where a graph is a 1-complex (so it can have loops and multiple edges), and edges are directed and
always come in pairs {y, ȳ}, where ȳ is the reverse of y.

Definition 1. A graph Γ consists of:

� Two sets, vertices V(Γ) and edges E(Γ).

� The endpoint maps o, t : E(Γ) → V(Γ)
(
o stands for ‘origin’ and t for ‘terminus’, so edge y goes from

o(y) to t(y)
)
.

� An involution ¯ : E(Γ)→ E(Γ), satisfying ∀y ∈ E(Γ) ȳ 6= y, o(ȳ) = t(y), t(ȳ) = o(y).

An orientation of a graph Γ is a choice E+ ⊂ E(Γ) such that ∀y ∈ E(Γ) exactly one of y, ȳ lies in E+.

A path of length n in Γ is a sequence of edges (y1, ..., yn), where for 1 ≤ i ≤ n− 1, t(yi) = o(yi+1). We say c
has a backtracking if for some i, yi+1 = ȳi.

For a path c = (y1, ..., yn), define o(c) = o(y1) and t(c) = t(yn). A cycle is a path c without backtracking,
which has o(c) = t(c).

A tree is a non-empty connected graph which does not contain cycles. (When saying that a graph is connected,
we mean that its natural realisation is connected in the topological sense. Alternatively we can use path-
connectedness: we can say that Γ is connected if for any vertices P,Q ∈ V(Γ) there exists a path c with
o(c) = P, t(c) = Q.)

A maximal tree of a graph is a subtree that is maximal under inclusion. A maximal tree of a graph X
contains all vertices of X, else it could be extended.
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Consider a group G and a set S ⊂ G. We can define an oriented graph X = Γ(G,S) with V(X) = G,
E+ = G× S, where for y = (g, s) ∈ E+, o(y) = g, t(y) = gs.

For y = (g, s) ∈ E+ denote ȳ by ̂(gs, s−1) (the hat is to avoid potential confusion with the edge (gs, s−1),
which lies in E+ if also s−1 ∈ S).

Note that G acts freely on Γ(G,S) via h : g 7→ hg, h : (g, s) 7→ (hg, s).

Examples:

1 a

b ab

(1, a)

(a, a)

(b, a)

(ab, a)

(a) S = {a}.

1 a

b ab

(1, a)

(a, a)

(b, a)

(ab, a)

(1, b)(b, b) (a, b)(ab, b)

(b) S = {a, b}.

Figure 1: The oriented graphs for G = Z/2Z× Z/2Z = 〈a, b | a2 = b2 = abab = 1〉 with different sets S (only
the edges in E+ are shown).

1 a

b

a−1

b−1

a2

ab

ab−1

b2

baba−1

a−2

a−1b

a−1b−1

b−2

b−1ab−1a−1

(1, a)

(1, b)

(a, a)

(a, b)

(b, a)

(b, b)

(a−1, a)

(a−1, b)

(b−1, a)

(b−1, b)

(ba−1, a)

(a−2, a)

(b−1a−1, a)

(ab−1, b)

(b−2, b)

(a−1b−1, b)

Figure 2: A part of the graph for G = F2 = 〈a, b〉 with S = {a, b}.
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Proposition 1. Defined as above,

(i.) Cycles in X correspond to relations on elements of S.

(ii.) X is connected ⇐⇒ S generates G.

From these it immediately follows that X is a tree if and only if S generates G freely.

Proof. Consider a path without backtracking c = (y1, ..., yn) in X with yi either (gi, si) or (̂gi, si) for some
gi ∈ G, si ∈ S ∪ S−1. Then o(c) = g1 and by induction gi = g1s1s2...si−1, so t(c) = g1s1...sn.

(i.) c is a cycle if and only if s1...sn = 1, so cycles correspond to relations on S.

(ii.) X is connected if and only if for any g ∈ G there is a path cg in X with o(cg) = 1, t(cg) = g. Such a
path exists for g if and only if g = s1s2...sn for some si ∈ S ∪ S−1.
Indeed, if cg exists, then it must have the form of c above, and hence g = s1s2...sn for some si ∈ S∪S−1.

Conversely, if g = s1s2...sn, then let yi = (s1...si−1, si) if si ∈ S, or yi = ̂(s1...si−1, si) if si ∈ S−1. Then
cg = (y1, ..., yn).
Hence cg exists for all g ∈ G if and only S generates G.

1.2 Trees of representatives

If a group G acts on a graph X, a very useful object to consider is the quotient G\X. Y = G\X has vertices
V(Y ) = G\V(X) and edges E(Y ) = G\E(Y ), and it also inherits a map ¯ : E(Y )→ E(Y ), with G · y = G · ȳ.
However it is not necessarily true that z̄ 6= z for z ∈ E(Y ). Hence Y is not necessarily a graph. This is an
unnecessary complication, so we only consider actions where G · y 6= G · ȳ for all y ∈ E(X).

Definition 2. We say group G acts on graph X without inversion if for all edges y ∈ E(X) and elements
g ∈ G, gy 6= ȳ.

From now on, we will only consider actions without inversion. This is not restrictive, since for any action of
G on X, we can barycentrically subdivide X to obtain an action without inversion (see Figure 3). It is easy
to check that if G acts without inversion on X then G\X is indeed a graph.

If G acts on X without inversion, then there is an orientation E+ of X that is preserved under G. Indeed, in
every orbit, we pick the orientation of one edge as we wish, and then the orientation is uniquely induced for
all the other edges.

Example:

A B

X

A C B

X ′

G ·A = G ·B G · C

G\X ′

Figure 3: The group G = Z/2Z acts on X in the obvious way, swapping A and B. Taking the barycentric
subdivision X ′ of X we obtain an action without inversion, and hence there is a quotient graph G\X ′. The
diagram for X ′ shows an example of an orientation that is preserved by G, and the orientation on G\X ′ is
inherited from X ′. (Again we only show the positive edges).

Proposition 2. Suppose group G acts on a connected graph X. Then every subtree T of Y = G\X lifts to
a subtree of X.
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Proof. Let q : X → Y be the quotient map.
Consider the set Ω = {trees T̂ in X such that q(T̂ ) ⊂ T and q is injective on T̂}. Then Ω is non-empty since

it contains single vertices of q−1(T ). Hence we can take T̂0, a maximal element of Ω under inclusion. Let

T0 = q(T̂0).

Suppose T0 6= T . Then some edges of T are missing in T0, and we can pick one which starts in T0. Thus there
is an edge y ∈ E(T ) \ E(T0), with o(y) ∈ T0. Let P = t(y), then P is not in T0 or else T would not be a tree.

Let ŷ be any lift of y to X. As q(o(ŷ)) = o(y) ∈ T0, there is a g ∈ G such that go(ŷ) ∈ T̂0. Then gŷ is a lift of

y starting in T̂0. So we can pick a lift ŷ with o(ŷ) ∈ T̂0.

Now let P̂ = t(ŷ) and add P̂ and ŷ to T̂0 to get the graph T̂1 = T̂0 + {ŷ, ¯̂y}+ P̂ .

As P̂ /∈ T̂0 (since P /∈ T0), T̂1 is also a tree. q(T̂1) ⊂ T and q is still injective on T̂1 (as y, P /∈ T0). Hence we
get a contradiction.

Thus if T̂0 is a maximal element of Ω, q(T̂0) = T , so a required lift of T exists.

Definition 3. If G acts on X, a tree of representatives of X mod G is a lift T of a maximal subtree T ′ of
G\X.

Suppose T is a tree of representatives of X mod G. Then since the projection of T in G\X is maximal, it
contains all vertices of G\X. Hence G · T contains all vertices of X.

1.3 Contracting

The final ingredient we need for the main theorem of this section is the idea of contracting a subtree of a
graph. If T is a subtree of X, we can replace the entire tree T by a single vertex (T ). We remove the edges in
T , and for the edges with one endpoint in T , this endpoint is now (T ). Further we can simultaneously contract
multiple disjoint trees.

Formally,

Definition 4. Let X a graph, and consider a subgraph Y that is a union of disjoint trees, Y =
⋃
i∈I Ti. Then

the contraction X/Y is the following graph:

� V(X/Y ) = V(X)/R, where R is the relation with the set of equivalence classes
{Ti : i ∈ I} ∪ {v ∈ V(X) \V(Y )}.

� E(X/Y ) = E(X) \ E(Y ).

� The reverse map ¯ : E(X/Y ) → E(X/Y ) is inherited from X, and the maps o, t : E(X/Y ) → V(X/Y )
are induced by the quotients.

Remark. Note that this corresponds to the topological notion of quotienting by a subspace, in fact the
realisation of X/Y is the quotient real(X/Y ) = real(X)/real(Y ).

Now we use a fact from algebraic topology (see for example [2], p. 15 for reference).

Proposition 3. If X is a CW-complex and A is a contractible subcomplex, then the quotient X → X/A is a
homotopy equivalence.

The realisation of a graph is naturally a CW-complex, and the realisation of a subgraph is a subcomplex.
Since a graph is a tree if and only if its realisation is contractible, this implies that if X is a tree and Y is a
union of disjoint subtrees, then the contraction X/Y is also a tree.
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1.4 Groups acting freely on graphs

Now we can prove the following theorem:

Theorem 1. Suppose G acts freely on a tree X. Let T be a tree of representatives of X mod G, and let E+

be an orientation on X preserved by G. Then if

S = {1 6= g ∈ G : ∃y ∈ E+ with o(y) ∈ T, t(y) ∈ gT},

then S freely generates G.

Proof. Consider a 6= b ∈ G,P ∈ V(T ). As T is a tree of representatives, G·P ∩ T = P . Hence G·P ∩ aT = aP ,
and as G acts freely, bP 6= aP , so bP /∈ aT . Hence aT ∩ bT = ∅. Thus the translates gT are all pairwise
disjoint, and there is a bijection g 7→ gT .

We can contract the trees gT to make X ′ = X/(G · T ), with vertices {(gT ) : g ∈ G}. We know that X ′ is a
tree, and we will show that it is isomorphic to Γ(G,S), which will give us the required result by Prop. 1.

We already have a bijection α : V(X ′)→ V(Γ(G,S)) = G given by (gT ) 7→ g. We shall extend it to a map of
graphs.
The edges of X ′ are E(X) \ E(G · T ). Consider the inherited orientation on X ′, E′+ = E+ ∩ E(X ′). As the
positively oriented edges of Γ(G,S) are G× S, it suffices to extend α to α : E′+ → G× S.

Now, for y ∈ E′+, we have o(y) = (gT ), t(y) = (hT ) for some g, h ∈ G. Then in X the edge y starts in gT and
ends in hT , so g−1y starts in T and ends in g−1hT . Hence g−1h ∈ S. Thus we can define α(y) = (g, g−1h).

Then o(α(y)) = g = α(o(y)), and t(α(y)) = h = α(t(y)), so α is a valid map of graphs.

Further, α is injective as for any g, h ∈ G there can be at most one edge in X starting in gT and ending in
hT since X is a tree.

And α is surjective as for any g ∈ G, s ∈ S, there is an edge y ∈ E′+ starting in T and ending in sT , so gy
starts in gT and ends in gsT . Then α(gy) = (g, s).

Hence α is an isomorphism, which shows that Γ(G,S) is a tree, and hence we are done.

Corollary. Any subgroup of a free group is free.

Proof. If G is free, then it acts freely on the tree Γ(G,S), where S is a basis for G. Then any subgroup H 6 G
also acts on Γ(G,S), and hence H must be free.

Example:

Let G be the free group on two elements F2 = 〈a, b〉, let n > 2, and consider the homomorphism
φ : G→ Z/nZ = 〈c〉 given by a 7→ c, b 7→ 1.

Let H = kerφ.

Then if X = Γ(G, {a, b}), then the vertices of H\X are the cosets of H in G, which are H, aH, ..., an−1H.
Hence the subtree

1 a a2 an−2 an−1

...

is a tree of representatives of X mod H. Call it T .
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Consider the positively oriented edges coming out of it (shown in blue):

1 a a2 an−2 an−1

b ab a2b an−2b an−1b

an
...

Now, akb = akba−kak, so the vertex akb belongs to akba−kT . And an ∈ anT .
Hence S = {akba−k : 0 6 k 6 n− 1} ∪ {an}, and |S| = n+ 1.

Thus in particular we have shown that F2 contains a subgroup isomorphic to Fm for any m > 3.

2 Graphs of groups

If a group G acts on a graph X, we can consider the stabilisers GP and Gy for vertices P , edges y. Clearly
Gy = Go(y) ∩ Gt(y), so we have injective homomorphisms Gy ↪→ Go(y) and Gy ↪→ Gt(y). Also note that
Gy = Gȳ.

The structure consisting of the underlying graph, the vertex and edge stabilisers, and the inclusions
Gy ↪→ Go(y) and Gy ↪→ Gt(y) is an example of a graph of groups, which we will define formally shortly.

Bass-Serre theory explores the relationship between graphs of groups and actions on graphs, and we will see
in chapter 3 that there are natural constructions that give a correspondence between the two. In this chapter
we define the main ingredients of these constructions (2.1), look at some motivating examples (2.2), and prove
a technical lemma that will be useful later (2.3).

2.1 Definitions

Definition 5. If Y is a connected non-empty graph, a graph of groups (G, Y ) is a collection of groups GP
for P ∈ V(Y ), Gy for y ∈ E(Y ) with Gy = Gȳ, and injective homomorphisms Gy ↪→ Go(y) and Gy ↪→ Gt(y).

We will usually denote the homomorphism Gy ↪→ Gt(y) by a 7→ ay (and hence Gy ↪→ Go(y) by a 7→ aȳ).

Now since we can treat a graph of groups as the underlying graph with additional structure, it is natural to
consider paths in it. Since the additional structure consists of the groups, we wish to preserve this information,
so our ‘paths’ will consist of an edge path, but with an element of GP chosen at every vertex P along the
path. Thus ‘paths’ will be alternating words of edges y and elements of relevant vertex groups.

Hence we will define a group F (G, Y ) where words of a certain format will correspond to these ‘paths’.

Formally:

Definition 6. Given a graph of groups (G, Y ), the group F (G, Y ) is generated by the vertex groups GP for
P ∈ V(Y ) and the edges y for y ∈ E(Y ), with the relations:

yay ȳ = aȳ for all y ∈ E(Y ), a ∈ Gy.

(Note in particular for a = 1 we get y−1 = ȳ.)
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This definition is designed to generalise both free products with amalgamations and HNN extensions (see
2.2.3), hence these relations. In 2.2.1 we will see why they make sense from a topological point of view.

Definition 7. The fundamental group of a graph of groups (G, Y ) relative to a maximal subtree T of
Y is the quotient π1(G, Y, T ) = F (G, Y )/N , where N is the normal closure of the free subgroup with basis
{y : y ∈ E(T )}.

Thus π1(G, Y, T ) is generated by GP for P ∈ V(Y ) and elements gy for y ∈ E(Y ) with gȳ = g−1
y ,

gya
yg−1
y = aȳ for all y ∈ E(Y ), a ∈ Gy, and in addition gy = 1 for y ∈ E(T ).

(Here gy is the image of y under the quotient map).

π1(G, Y, T ) is the object we will deal with a lot later, but to see why it is called a ‘fundamental group’ we
can define another object, the group of loops based at a vertex, and we will show that it is isomorphic to
π1(G, Y, T ).

Definition 8. For a path c in Y of length n with edges y1, ..., yn, vertices Pi = o(yi+1) = t(yi), a word of
type c in (G, Y ) is (c, µ), where µ = (r0, ..., rn) with ri ∈ GPi .

The associated element of (c, µ) is |c, µ| = r0y1...ynrn ∈ F (G, Y ).

Then for P0 ∈ V(Y ) we define the fundamental group of (G, Y ) based at P0 as

π1(G, Y, P0) = {|c, µ| ∈ F (G, Y ) : o(c) = t(c) = P0}.

(Note that if G is trivial, i.e. every group is just {1}, then π1(G, Y, P0) = π1(Y, P0), where the latter is the
fundamental group in the canonical topological sense.)

Proposition 4. There is an isomorphism between π1(G, Y, P0) and π1(G, Y, T ).

Proof. We will not give a full proof, but the idea is to map a vertex or edge to a path based at P0 in the
obvious way, by first going in T from P0 to the vertex/edge and then coming back.

For any vertex P of Y , there is a unique path without backtracking from P0 to P in T . If the path is (y1, ..., yn),
let γP = y1...yn ∈ F (G, Y ).

Then the homomorphism f : π1(G, Y, T )→ π1(G, Y, P0) defined by

x 7→ γPxγ
−1
P for x ∈ GP

gy 7→ γo(y)yγ
−1
t(y) for y ∈ E(Y ) \ E(T )

is well-defined and inverse to the restriction to π1(G, Y, P0) of the projection F (G, Y )→ π1(G, Y, T ).

Corollary. Up to isomorphism, π1(G, Y, P0) is independent of the choice of vertex P0, and similarly up to
isomorphism π1(G, Y, T ) is independent of the choice of maximal tree T .
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Picture for an edge:
(we abuse notation here, showing the paths in the graph corresponding to the elements of π1(G, Y, T ) and
π1(G, Y, P0), in fact f is a homomorphism of groups, not a map of graphs)

P0

P Q

T

y

P0

P Q

f(y)

f

Figure 4: For an edge y and a choice of maximal tree T we show the path corresponding to f(y).

2.2 Important examples of the fundamental group of graphs

Here we discuss the structure π1(G, Y, T ) takes for some particularly simple graphs Y .

2.2.1 Segment

Suppose Y is a segment:

P Qy

Let the groups of G be GP , GQ, Gy. There is a unique maximal tree T , which is the whole Y . Then π1(G, Y, Y )
is generated by GP and GQ, with the relations ay = aȳ for all a ∈ Gy.

Then the fundamental group is the amalgamated free product π1(G, Y, T ) = GP ∗Gy GQ.

Link to topology:
Consider spaces XP , XQ, Xy with fundamental groups GP , GQ, Gy respectively. (Such a space exists for any
group G, and in fact we can take it to be a CW-complex with all other homotopy groups trivial, in which
case it is called an Eilenberg-MacLane space, denoted K(G, 1).) Let the injective homomorphisms in (G, Y )
be fP : Gy ↪→ GP , fQ : Gy ↪→ GQ.

Then there are continuous maps φP : Xy ↪→ XP , φQ : Xy ↪→ XQ, inducing the maps fP and fQ respectively
on the fundamental groups.

We can define a mapping cylinder M = Xy × [0, 1], and the total space

X = (XP tM tXQ)/ ∼ where for x ∈ Xy, M 3 (x, 0) ∼ φP (x) ∈ XP , M 3 (x, 1) ∼ φQ(x) ∈ XQ.

Then using the Seifert – Van Kampen Theorem,

π1(X) = π1(XP ) ∗π1(Xy) π1(XQ) = GP ∗Gy GQ = π1(G, Y, T ).

This is a simple example of a construction called a graph of spaces, defined by Peter Scott and Terry Wall in
[3]. In general, we can define it as follows:
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Definition 9. For a connected non-empty graph Y , a graph of spaces (X , Y ) is a collection of spaces XP

for P ∈ V(Y ), Xy for y ∈ E(Y ) with Xy = Xȳ, and continuous maps φy : Xy → Xt(y).

The corresponding total space X is defined as( ⊔
P∈V(Y )

XP t
⊔

y∈E(Y )

(Xy × [0, 1])
)/

∼

where ∼ is the minimal equivalence relation where for all y ∈ E(Y ):

Xy × [0, 1] 3 (x, t) ∼ (x, 1− t) ∈ Xȳ × [0, 1] for x ∈ Xy, t ∈ [0, 1],

Xy × [0, 1] 3 (x, 1) ∼ φy(x) ∈ Xt(y) for x ∈ Xy.

From a graph of spaces (X , Y ) we can construct a graph of groups (G, Y ) with the same underlying graph Y by
taking fundamental groups of the spaces. (Note though that in general we will not get injective homomorphisms
from the edge groups into vertex groups, but we can define the fundamental group of a graph of groups
without this condition.) There is a general result that states that if X is the total space of (X , Y ), then
π1(X) ∼= π1(G, Y ).

From this topological perspective we can see the reason for the relation yay ȳ = aȳ in F (G, Y ). a ∈ Gy
corresponds to a loop in Xy, say based at P0. Then ay corresponds to this loop in Xy × {1}, whereas aȳ

corresponds to the loop in Xy × {0}. Now y corresponds to paths from Xy × {0} to Xy × {1}, say the path
t 7→ (P0, t). Then yay ȳ is a loop based at (P0, 0), and it is homotopic in Xy to the loop aȳ. Hence for the
isomorphism between π1(X) and π1(G, Y ) to work, we need yay ȳ = aȳ to hold in π1(G, Y ).

Figure 5: The paths corresponding to aȳ and yay ȳ are homotopic in the mapping cylinder Xy × [0, 1].

2.2.2 Tree

Now we will consider the case where Y is a general tree. There is still a unique maximal tree, which is Y .

Definition 10. Consider a family of groups indexed by a set I, {Gi : i ∈ I}, and for all i, j a (possibly
empty) set of homomorphisms Fij ⊂ Hom(Gi, Gj). Then the direct limit of this system is a group G with
homomorphisms φi : Gi → G for all i ∈ I such that ∀i, j ∈ I, ∀fij ∈ Fij , φj ◦ fij = φi, and satisfying the
following universal property:

For any group H with homomorphisms ψi : Gi → H such that ∀i, j ∈ I, ∀fij ∈ Fij , ψj ◦ fij = ψi, there exists
a unique homomorphism h : G→ H such that ∀i ∈ I, ψi = h ◦ φi.

Thus G is such that the inner triangle commutes in the diagram below, and for any H making the outer
triangle commute, there is a unique homomorphism h : G→ H making the entire diagram commute:
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G

Gi Gj

H

fij

φi φj

ψi ψj
h

Figure 6: Direct limit

A simple case of a direct limit is that of three groups A, B, C, with injective homomorphisms C ↪→ A,
C ↪→ B. Then the direct limit of this system is the amalgamated free product A ∗C B.

In general, the direct limit is generated by the Gi, with additional relations given by

x = fij(x) for all i, j ∈ I, x ∈ Gi, fij ∈ Fij .

Hence if we take the groups GP for P ∈ V(Y ), Gy for y ∈ E(Y ), and the homomorphisms Gy ↪→ Gt(y) given
by a 7→ ay, then the direct limit of this system is generated by the GP and Gy subject to

a = ay = aȳ for all y ∈ E(Y ), a ∈ Gy.

Then it is equal to the group generated by the GP subject to

ay = aȳ for all y ∈ E(Y ), a ∈ Gy,

which is precisely π1(G, Y, Y ).

2.2.3 Loop

Now consider the case of Y having a single vertex and one loop:

P y

Here the maximal tree T is the single vertex P , and so π1(G, Y, T ) = F (G, Y ) is generated by GP and y, with
the relations

yayy−1 = aȳ for all a ∈ Gy.

This is known as an HNN extension (which stands for Higman, Neumann, Neumann, who first introduced
them in 1949):

Definition 11. Consider a group A with two isomorphic subgroups, C and C ′, and isomorphism
φ : C

∼−→ C ′. Then the HNN extension A∗C is generated by A and an extra element s, with the relations

sgs−1 = φ(g) for all g ∈ C.
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Thus C and C ′ are conjugate in A∗C .

There is also an alternate definition: for n ∈ Z let An be a copy of A, Cn a copy of C. Let H be the direct
limit of the following diagram:

An−1 An An+1

Cn−1 Cn

... φ id φ id ...

Then there is a shift map u : H → H induced by the canonical isomorphisms id : An → An+1. Then let G be
the semi-direct product of H with Z = 〈s〉, with s acting by u.

Identifying A with A0, for any g ∈ C 6 A, u(g) is the image of g ∈ C0 under id : C0 → A1. But by definition
of the direct limit, for g ∈ C0, A0 3 φ(g) = id(g) ∈ A1 in H, so u(g) = φ(g) in H.

As shs−1 = u(h) for all h ∈ H, in particular for g ∈ C, sgs−1 = u(g) = φ(g).

Since An = snA0s
−n, we see that G is generated by A and s, and the additional relations are

sgs−1 = u(g) = φ(g) for g ∈ C. Hence we see that G = A∗C as defined originally.

Examples:

(i.) Let G = Z/2Z× Z/2Z, generated by a, b. Then φ : 〈a〉 → 〈b〉 given by a 7→ b is an isomorphism of the
two subgroups. Then

G∗〈a〉 = 〈a, b, s | a2 = b2 = abab = sas−1b = 1〉 = 〈a, s | a2 = (asas−1)2 = 1〉.

Using the alternative definition: let Gn and An be copies of G and 〈a〉 respectively, with Gn generated
by an, bn, and An by a′n.
Then H is generated by {an, bn : n ∈ Z}, and as Gn 3 φ(a′n) = id(a′n) ∈ Gn+1 in H, bn = an+1.

Thus H = 〈an : n ∈ Z | a2
n = (anan+1)2 = 1〉.

The shift map u is an 7→ an+1, so there is a map ψ : 〈s〉 → Aut(H) given by s 7→ u.

Then G∗〈a〉 = H oψ 〈s〉 is generated by H and 〈s〉 with the additional relations an+1 = sans
−1. Hence,

writing a for a0,
G∗〈a〉 = 〈a, s | a2 = (asas−1)2 = 1〉.

(ii.) Let A = Z = 〈a〉. Then A has infinitely many subgroups isomorphic to A. For example, we can take C
to be A, and C ′ = 〈a−1〉, i.e. we consider the automorphism of A given by a 7→ a−1.

Then A∗C = 〈a, s|sas−1 = a−1〉. This is a group known as the Baumslag-Solitar group BS(1,−1).
(In general, BS(n,m) = 〈a, b | ban = amb〉 and arises as the HNN extension Z∗nZ, with the subgroup
isomorphism φ : nZ ∼−→ mZ.)

BS(1,−1) is the fundamental group of the Klein bottle, and we can see that this is an example of the
topological correspondence described in 2.2.1.
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The graph of groups and corresponding graph of spaces are:

A C

↪→

←↩

id

a 7→ a−1

S1 S1

↪→

←↩

id

x 7→ 1− x

Figure 7: Graph of groups and graph of spaces for the HNN extension BS(1,−1). (We treat S1 as the unit
interval with the endpoints identified.)

Then identifying the vertex space S1 with one end of the mapping cylinder S1 × [0, 1] corresponding to
the loop, the total space is(

S1 × [0, 1]
)/
∼ , where (x, 0) ∼ (1− x, 1) for all x ∈ S1.

But this is precisely the Klein bottle obtained from the standard gluing of the unit square:

2.3 Reduced words

2.3.1 Definition and results

Consider a word (c, µ) of type c in (G, Y ), with c = (y0, ..., yn), µ = (r0, ..., rn). We would like to know whether
or not |c, µ| = 1. We know that if c has a backtracking yi+1 = yi, and ri = ay for some a ∈ Gy, then we can
replace yiriyi+1 = yay ȳ by aȳ in |c, µ|, thus simplifying it. We will say that a word is reduced if it can not be
simplified in this way.

Definition 12. A word (c, µ) of length n > 1 is reduced if whenever yi+1 = yi, ri /∈ Gyiyi .
(Where Gyy is the image of Gy in Gt(y) under a 7→ ay.)

A word (c, µ) of length n = 0 is reduced if r0 6= 1.

In fact it turns out that a word being reduced is enough for its associated element of F (G, Y ) to be non-trivial.
This is a tool that will be useful to us in the next section. The proof is the most complicated of any in this
essay, and it relies on a technique called dévissage, which reduces the graph Y by contracting subgraphs until
we obtain either a segment or a loop.

But first, let us state the theorem and a few corollaries:

Theorem 2. If (c, µ) is a reduced word, then |c, µ| 6= 1.

Corollary 1. The homomorphisms GP → F (G, Y ) are injective for P ∈ V(Y ).

Proof. This is the case where c has length 0, as we get that for 1 6= r0 ∈ GP , r0 6= 1 in F (G, Y ).
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Corollary 2. If (c, µ) is reduced, and if c has length n > 1, then for P0 = o(c), |c, µ| /∈ GP0
.

Proof. Suppose that |c, µ| = x ∈ GP0
. Then if µ′ = (x−1r0, r1, ..., rn), then (c, µ′) is reduced, but |c, µ′| = 1.

Corollary 3. Let c be a cycle in Y , (c, µ) a word of type c. Then for any maximal tree T of Y , the image of
|c, µ| under the projection into π1(G, Y, T ) is 6= 1.

Proof. If P0 = o(c) = t(c), then |c, µ| ∈ π1(G, Y, P0). But we know from Prop. 4 that the projection
F (G, Y ) → π1(G, Y, T ) restricts to an isomorphism on π1(G, Y, P0). Hence as |c, µ| 6= 1, its image is also
non-trivial.

2.3.2 The dévissage argument

Let Y ′ be a non-empty connected subgraph of Y . Then (G, Y ) restricts to a graph of groups (G|Y ′ , Y ′).

Suppose that Theorem 2 holds for (G|Y ′ , Y ′). Our aim is to show that this implies that the theorem also holds
for (G, Y ).

We can define the contraction W = Y/Y ′, with:

V(W ) = V(Y ) \V(Y ′) ∪ {(Y ′)},
E(W ) = E(Y ) \ E(Y ′),

¯ : E(W )→ E(W ) the restriction of ¯ : E(Y )→ E(Y ),

o, t : E(W )→ V(W ) induced from Y by the projection V(Y )→ V(W ).

Then define the graph of groups (H,W ) with:

HP = GP for P ∈ V(Y ) \V(Y ′),

H(Y ′) = F (G|Y ′ , Y ′),
Hy = Gy for y ∈ E(W ),

Hy → Ht(y) induced from Y.

Note that since Theorem 2 holds for (G|Y ′ , Y ′), by Corollary 1, the maps GP → H(Y ′) = F (G|Y ′ , Y ′) are
injective for P ∈ V(Y ′).
Hence the homomorphisms Hy → Ht(y) are indeed injective for all edges y.

There is a natural homomorphism F (G, Y )→ F (H,W ) induced by the projection of the graphs of groups.

Lemma 1. The homomorphism F (G, Y )→ F (H,W ) is an isomorphism.

Proof. It is clear that the generators of the two groups are the same, with some of the generators of F (G, Y )
simply grouped under the name H(Y ′) in F (H,W ). The relations are also the same, the only case where this
does not follow directly from the definition is for edges y of W which have (Y ′) as a vertex.

Suppose y ∈ E(W ), and in W t(y) = (Y ′). Then in Y t(y) = P for some P ∈ V(Y ′). Then the image of Hy

under a→ ay can be identified with the image of Gy in GP . (Again we use Corollary 1 for Y ′, allowing us to
consider GP as a subgroup of H(Y ′).) Hence we have canonical isomorphisms Hy

y → Gyy for y ∈ E(W ), and so
the relations

yay ȳ = aȳ for a ∈ Gy = Hy

are exactly the same in F (G, Y ) and F (H,W ).
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For a word (c, µ) in (G, Y ) we can define the corresponding word (c′, µ′) in (H,W ):

� If c lies entirely in Y ′, then c′ is the empty path and µ′ = (|c, µ|).

� If c = (y1, ..., yn) contains a subpath ĉ = (yk, ..., ym) entirely in Y ′, then replace c by (y1, ..., yk−1, ym+1, ..., yn)
and µ by (r0, ..., rk−2, |ĉ, µ̂|, rm+1, ..., rn), where µ̂ = (rk, ..., rm+1).
Repeat this until c lies entirely in E(Y ) \ E(Y ′).

Example:

In the graph below, let Y ′ be the subgraph with edges y2, y3, y6 (and their inverses).
Let c be the figure of eight loop (y1, y2, y3, y4, y5, y6). Then c′ = (y1, y4, y5) and µ′ = (r0, r1y2r2y3r3, r4, r5y6r6).

A

B

C

D

E

y1

y2

y3

y4

y5

y6

Y

D
(Y ′) y4

y5

y1

W

Lemma 2. If (c, µ) is reduced, so is (c′, µ′).

Proof. If c′ has length 0, then c lies inside Y ′. As we assumed that Theorem 2 holds for (G|Y ′ , Y ′), |c, µ| 6= 1
in F (G|Y ′ , Y ′). Then µ′ = (q0), where q0 = |c, µ| 6= 1, so (c′, µ′) is reduced.

Now suppose c′ has length m > 1. Let c′ = (w1, ..., wm), µ′ = (q0, ..., qm). Suppose c′ has a backtracking
wi+1 = wi. If t(wi) 6= (Y ′), this backtracking is not an issue as c is reduced.

If t(wi) = (Y ′), there are two cases:

(i.) If this bactracking exists in c, i.e. for some j, wi = yj , wi+1 = yj+1, qi+1 = rj+1, then since we can
identify Hwi

wi with G
yj
yj (cf. proof of Lemma 1), rj+1 /∈ G

yj
yj implies qi+1 /∈ Hwi

wi .

(ii.) If this backtracking comes from a cycle of c in Y ′, i.e. for some j < k,
wi = yj , wi+1 = yk+1, qi+1 = rj+1yj+1...ykrk+1, then we use Corollary 2.

Let ĉ = (yj+1, ..., yk), µ̂ = (rj+1, ..., rk+1). Then ĉ is a cycle based at P = t(yj). So by Corollary 2,
|ĉ, µ̂| /∈ GP , as (ĉ, µ̂) is reduced, being a subword of (c, µ).

But qi+1 = |ĉ, µ̂|, and identifying Hwi
wi with G

yj
yj 6 GP , we see that qi+1 /∈ Hwi

wi .

Combining Lemmas 1 and 2 we obtain the following result:

Lemma 3. Suppose Y ′ is a connected non-empty subgraph of Y , W = Y/Y ′, (H,W ) the graph of groups
defined as above. Then if Theorem 2 holds for both (G|Y ′ , Y ′) and (H,W ), then it also holds for (G, Y ).

Proof. Take a reduced word (c, µ) in (G, Y ). By Lemma 2, the corresponding word (c′, µ′) of (H,W ) is reduced,
so |c′, µ′| 6= 1 (by Theorem 2 applied to (H,W )).
By Lemma 1, we have the isomorphism F (H,W )→ F (G, Y ), which maps |c′, µ′| to |c, µ|. Hence |c, µ| 6= 1.
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2.3.3 Normal form for free products with amalgamation

We need one more ingredient for the proof of Theorem 2, which is a normal form for free products with
amalgamation.

Let G = A ∗C B, and let S, T be right transversals of C in A,B respectively, with the representatives of the
coset C removed.

Let W be the set of finite alternating words in the letters a, b (such as a, baba or the empty word 0).
For w ∈W define Π(w) as the corresponding Cartesian product of copies of S and T , with
Π(0) = ∅, Π(a) = S, Π(b) = T , and Π(w1w2) = Π(w1)×Π(w2) for any words w1, w2 ∈W .

Let G′ =
⊔
w∈W C×Π(w). (So elements of G′ look like one of c, cs1t1...sntn, cs1t1...sn, ct1s1...tnsn, ct1s1...tn,

with c ∈ C, si ∈ S, ti ∈ T .)
Then G′ is a group under the operation of concatenation, with relations from A and B, as we can ‘slide’ the
elements of C through to the left – e.g. if s ∈ S, c ∈ C, then sc ∈ A, so in A, sc = c′s′ for some c′ ∈ C, s′ ∈ S.

We will show that in fact G′ is G, by showing that it satisfies the universal property for G. Let fA : A→ G′

be the homomorphism given by the unique representation of a ∈ A as a = cs with c ∈ C, s ∈ S. Similarly
define fB : B → G′.

Suppose H is a group with homomorphisms φA, φB : A,B → H such that φA(c) = φB(c) for c ∈ C. Then if a
homomorphism h : G′ → H exists with h ◦ fA = φA, h ◦ fB = φB , we must have:

h(c) = φA(c) = φB(c) for c ∈ C
h(s) = φA(s) for s ∈ S
h(t) = φB(t) for t ∈ T.

Hence such an h is unique. and we can check that h is in fact a homomorphism. From the definition of h it is
clear that for c ∈ C, s ∈ S, t ∈ T , h(cs) = h(c)h(s), h(ct) = h(c)h(t), h(st) = h(s)h(t), h(ts) = h(t)h(s).

So the only thing we need to check is that h(sc) = h(s)h(c) and h(tc) = h(t)h(c). But if sc = c′s′ in A, then

h(sc) = h(c′)h(s′) = ψA(c′)ψA(s′) = ψA(c′s′) = ψA(sc) = ψA(s)ψA(c) = h(s)h(c).

Similarly we show that h(tc) = h(t)h(c), and so we are done.

Thus we have proved:

Proposition 5. Every element of A ∗C B can be uniquely written in one of the following forms:
c, cs1t1...sntn, cs1t1...sn, ct1s1...tnsn or ct1s1...tn, with c ∈ C, si ∈ S, ti ∈ T .

Note that this implies that the homomorphisms fA, fB : A,B → A ∗C B are injective.

2.3.4 Proof of Theorem 2

Case (i): Y is a segment. P Qy

Let A = GP , B = GQ, C = Gy.
First consider the case n = 0. we know from Prop. 5 that A,B inject into A ∗C B = π1(G, Y, Y ). Then
since π1(G, Y, Y ) ∼= π1(G, Y, P ) and π1(G, Y, P ) 6 F (G, Y ), we see that GP and GQ inject into F (G, Y ), so in
particular the case of n = 0 holds.

Now suppose n > 1. By projecting F (G, Y ) onto 〈y〉, we see that |c, µ| can only be 1 if n is even, so assume
that n > 2.

Now project |c, µ| onto π1(G, Y, Y ) ∼= A ∗C B to get r0r1...rn. The ri are alternately from A and B, and since
(c, µ) is reduced, ri /∈ C for i = 1, ..., n− 1.
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Now replacing ri by cisi or citi with ci ∈ C, si ∈ S, ti ∈ T , and sliding the ci through to the left, we obtain
the normal form for r0r1...rn, which contains at least n + 1 − 2 > 1 elements of S or T . (The -2 comes from
the possibility that r0, rn ∈ C.)

Hence by Prop. 5, r0r1...rn 6= 1, and hence |c, µ| 6= 1, and so we are done.

Case (ii): Y is a tree.
It is enough to prove the theorem for all finite trees, since every path in Y is contained in a finite subtree.

Hence we can induct on the number of edges, e = 1
2 |E(Y )|. We proved the base case e = 1 above. If e > 1, we

can contract a subgraph Y ′ consisting of a single edge of Y to obtain the graph W . By Prop. 3, W is again
a tree, and it has less edges, so the theorem holds for it by induction. Since the theorem also holds for the
segment Y ′, it follows from Lemma 3 that the theorem holds for Y .

Case (iii): Y is a loop.

P y

Let A = GP , C = Gy.
Then F (G, Y ) = A∗C , with the injective homomorphisms C → A being g → gy and g → gȳ. Let us identify
C with its image under g → gy, and let g → gȳ be φ. Then, as in 2.2.3, define H as the direct limit of the
following diagram, where Ci and Ai are copies of C and A for i ∈ Z:

An−1 An An+1

Cn−1 Cn

... φ id φ id ...

Then A∗C = H oψ 〈y〉 where ψ : y 7→ u for the shift map u. Note that An = ynA0y
−n.

For a reduced word (c, µ), |c, µ| = r0y
e1r1y

e2r2...y
enrn, where ri ∈ A, ei = ±1, and if ei+1 = −ei, then

ri /∈ Cy
ei

. (Note Cy = C, Cy
−1

= φ(C).)

Now, H is the normal subgroup of A∗C which is the kernel of the projection onto 〈y〉, so if
∑
ei 6= 0, then

|c, µ| /∈ H, hence |c, µ| 6= 1.

Suppose then that
∑
ei = 0. Let di = e1 + ...+ ei, and let si = ydiriy

−di .
Then |c, µ| = s0s1...sn, with si ∈ Adi , d0 = dn = 0, di+1 − di = ei+1 = ±1, and if di+1 = di−1, then
si /∈ ydiCy

ei
y−di .

Now let T be the tree with vertices labelled by Z, and edges zn from n to n + 1 for all n ∈ Z. Let (K, T ) be
the graph of groups with vertex groups Kn = An, edge groups Kzn = Cn, and homomorphisms id and φ:

n n+ 1n− 1
...

zn−1 zn ...

An−1 An An+1Cn−1 Cn←
φ

→
id

→
id

←
φ

Figure 8: The graph of groups (K, T ).
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Then H = π1(K, T, T ) (see 2.2.2).
Let c′ be the path (w1, .., wn), where wi is the edge from di−1 to di. (Thus if ei = 1, then wi = zdi−1

, and if
ei = −1, then wi = zdi .)

Then if µ′ = (s0, s1, ..., sn), since si ∈ Adi = Kdi , we have that (c′, µ′) is a word of type c′ in F (K, T ). c′ is a
cycle, as dn = d0 = 0. Now, T is a tree, so we can apply Theorem 2 to it, and by Corollary 3, the projection
of |c′, µ′| into π1(K, T, T ) is non-trivial. But this projection is precisely s0s1...sn = |c, µ|. Thus we have that
|c, µ| is non-trivial in π1(K, T, T ) = H, hence it is non-trivial in F (G, Y ).

Case (iv): Y is any graph.

As in case (ii), we only need to prove this for finite Y . Again we use induction on e = 1
2 |E(Y ). The base case

e = 1 is either a segment or a loop, and we have proved both these cases already.

For e > 1, we can contract a segment or loop Y ′ to get a graph W with less edges. The theorem holds for Y ′,
and for W by induction, and thus by Lemma 3 it holds for Y so we are done.

3 The main theorem

We have the following result from topology:

Proposition 6. Let X̃ be a simply-connected Hausdorff space, and let G be a group acting on X̃ freely and
properly discontinuously by homeomorphisms. Then if X = G\X̃, the fundamental group of X is G, and X̃
is the universal cover of X.

The main theorem of Bass-Serre Theory is a stronger analogue of this statement for graphs. Due to their
discrete nature, any action on graphs is automatically properly discontinuous, so we don’t need to worry
about that condition. But by working with graphs of groups rather than simply graphs, we can keep track of
stabilisers in our action, and hence we can consider actions which are not free.

3.1 The Bass-Serre tree: from graph of groups to action on graph

Here we will define the Bass-Serre tree, which is essentially a universal cover of a graph of groups.

We take a graph of groups (G, Y ), with Y connected and non-empty. Pick an orientation E+ of Y , and define
a sign function σ on E(Y ), with:

σ(y) =

{
0 if y ∈ E+

1 if y /∈ E+

Let |y| be the edge out of {y, ȳ} which belongs to E+.

We will construct the following objects:

� a graph X̃ = X̃(G, Y, T ) [the universal cover]

� an action of π = π1(G, Y, T ) on X̃ [the deck transformations]

� a map p : X̃ → Y inducing an isomorphism of graphs π\X̃ ∼−→ Y [the covering map]

� sections V(Y ) → V(X̃) and E(Y ) → E(X̃), denoted by P 7→ P̃ and y 7→ ỹ (i.e. maps such that
p(P̃ ) = P, p(ỹ) = y) such that:

– for P ∈ V(Y ), the stabiliser πP̃ of P̃ is GP

– for y ∈ E(Y ), the stabiliser πỹ of ỹ is Gww where w = |y|
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(Where does the condition πỹ = Gww come from? It is natural to ask for πỹ to be an image of Gy, so it should
be either Gyy or Gȳȳ. We then link this choice of two options to the orientation E+ to allow us to keep track of
it using σ, and arbitrarily choose the stabiliser to be Gww rather than Gw̄w̄.)

Then the vertices of X̃ must be

V(X̃) =
⊔

P∈V(Y )

π · P̃ =
⊔

P∈V(Y )

π/πP̃ ,

and the edges must be

E(X̃) =
⊔

y∈E(Y )

π · ỹ =
⊔

y∈E(Y )

π/πỹ.

We can then let P̃ be 1 · πP̃ ∈ π/πP̃ , and similarly for ỹ.

With these definitions π acts naturally on X̃, with g · hπP̃ = ghπP̃ , and similarly for edges.

To complete the definition of X̃ we need to define the reverse map ¯ and the endpoint maps o, t.
It is natural to let ỹ = ˜̄y.

Now consider y ∈ E+, with o(y) = P, t(y) = Q. We need to have o(ỹ) = aP̃ , t(ỹ) = bQ̃ for some a, b ∈ π. We
also need πỹ = πo(ỹ) ∩ πt(ỹ), so

Gȳȳ = aGP a
−1 ∩ bGQ b

−1. (∗)

Since Gȳȳ ⊂ GP , and g−1
y Gȳȳgy ⊂ GQ, letting a = 1, b = gy makes (∗) hold.

Then if instead y /∈ E+, with o(y) = P, t(y) = Q again, we use that ȳ ∈ E+ to see that

o(y) = t(ȳ) = gȳQ̃ = g−1
y Q̃,

t(y) = o(ȳ) = P̃ .

Hence we define for all y ∈ E(Y ), g ∈ π:

� gỹ = g ˜̄y

� o(gỹ) = gg
−σ(y)
y õ(y)

� t(gỹ) = gg
1−σ(y)
y t̃(y)

This is well-defined: the reverse map is an involution and o(z) = t(z̄) for z ∈ E(X̃).

Let us also check that the edge stabilisers are as required: We need to show that for any h ∈ πỹ, ho(ỹ) = o(ỹ)
and ht(ỹ) = t(ỹ).

Note for y ∈ E(Y ),
πỹ = g1−σ(y)

y Gyy g
σ(y)−1
y = g−σ(y)

y Gȳȳ g
σ(y)
y .

(This is easy to check considering the two cases σ(y) = 0, 1.)

Hence
gσ(y)
y πỹ g

−σ(y)
y = Gȳȳ ⊂ Go(y) = π

õ(y)
,

so
∀h ∈ πỹ, hg−σ(y)

y õ(y) = g−σ(y)
y õ(y), hence ho(ỹ) = o(ỹ).

Similarly ∀h ∈ πỹ, ht(ỹ) = t(ỹ), and hence the graph X̃ is well-defined.

Note that if gy = 1, then ỹ is a lift of y, and in particular T lifts to a tree T̃ in X̃.
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Theorem 3. Let (G, Y ) be a graph of groups with Y connected and non-empty, let T be a maximal tree of
Y , E+ an orientation of Y . Then the graph X̃ = X̃(G, Y, T ) is a tree.

Proof.

1.) X̃ is connected:

If y ∈ E(Y ), then either o(ỹ) = õ(y) or t(ỹ) = t̃(y), so one end of ỹ lies in T̃ . Hence if W is the smallest
subgraph of X̃ which contains ỹ for all y ∈ E(Y ), then W is connected.
Since E(X̃) = π · E(Y ), we have X̃ = π ·W .

Thus it suffices to find a generating set S of π such that for any s ∈ S∪S−1, W ∪sW is connected. Indeed,
then for any g ∈ π, we can write g = s1s2...sn for si ∈ S ∪ S−1. Then for any i, W ∪ siW is connected, so
s1...si−1W ∪s1...si−1siW is connected. Hence W ∪s1W ∪s1s2W ∪ ...∪gW is connected, hence W and gW
lie in the same connected component of X̃. As this holds for any g ∈ π, this implies that X̃ is connected.

Take
S =

⋃
P∈V(Y )

GP ∪ {gy : y ∈ E(Y )}.

Then S generates the image of F (G, Y ) under the projection onto π1(G, Y, T ) = π, which is all of π.

If s ∈ GP , then as GP = πP̃ , sP̃ = P̃ , hence P̃ is a common vertex of W and sW , so W ∪sW is connected.

If s = gy, consider two cases:

(i) If σ(y) = 0, then W 3 t(ỹ) = gy t̃(y) ∈ gyW .

(ii) If σ(y) = 1, then W 3 õ(y) = gyg
−1
y õ(y) = o(gy ỹ) ∈ gyW .

In either case W and gyW share a vertex, so W ∪ gyW is connected.

Hence we have shown that X̃ is connected.

2.) X̃ is a tree:
We need to show that X̃ does not contain closed paths of positive length without backtracking.

Suppose that such a path c̃ does exist, and c̃ = (h1ỹ1, ..., hnỹn) for some yi ∈ E(Y ), hi ∈ π. Let c be the
projection p(c̃) in Y , and let its vertices be P0, ..., Pn. Since c̃ is a cycle, so is c, so P0 = Pn.
Then if σi = σ(yi) and gi = gyi , for i = 1, ..., n we have (treating the i modulo n):

t(hiỹi) = o(hi+1 ỹi+1), hence hig
1−σi
i P̃i = hi+1g

−σi+1

i+1 P̃i.

Let qi = hig
−σi
i , then

qigiP̃i = qi+1P̃i.

Hence if ri = (qigi)
−1qi+1, then ri ∈ πP̃i = GPi , and

giri = q−1
i qi+1.

Taking the product over all i, we see that

g1r1g2r2...gnrn = 1.

So if µ = (1, r1, r2, ..., rn), then (c, µ) is a word of type c in F (G, Y ), and the image of |c, µ| in π1(G, Y, T )
is 1. However we will now show that (c, µ) is reduced, which is a contradiction due to Corollary 3.
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Indeed, suppose yi+1 = ȳi, then gi+1 = g−1
i , and σi+1 = 1− σi. Hence

ri =
(
(hig

−σi
i )gi

)−1
(
hi+1(g−1

i )−(1−σi)
)

= gσi−1
i h−1

i hi+1g
1−σi
i .

We wish to show that ri /∈ Gyiyi , i.e. that

h−1
i hi+1 /∈ g1−σi

i Gyiyig
σi−1
i = πỹi .

But since c̃ does not have any backtrackings,

hiỹi 6= hi+1ỹi+1 = hi+1ỹi.

This implies that h−1
i hi+1 /∈ πỹi , so ri /∈ Gyiyi .

Thus (c, µ) is reduced, so we got a contradiction, and hence such a path c̃ does not exist.
Thus X̃ is a tree.

3.2 From action on graph to graph of groups

Suppose G acts on a connected non-empty graph X. Let Y = G\X, T a maximal tree of Y . We will define a
graph of groups (G, Y ) corresponding to this action and we will see that if X is a tree, then π1(G, Y, T ) ∼= G.

Let us construct (G, Y ):
Take j : T → X a lift of T . Choose an orientation E+ on Y and define σ : E(Y )→ {0, 1} as before.

We will extend j to all of E(Y ), such that jy = jȳ. For this it is enough to define j on E+ \E(T ). We do this
by requiring that for all y ∈ E+, o(jy) ∈ jT , hence o(jy) = jo(y).

T

y

jT

jy

j−−−−−−−→

Since both jt(y) and t(jy) project to t(y) in Y , there is a γy ∈ G such that t(jy) = γyjt(y).
Extend the map y 7→ γy to all of E(Y ) by setting γȳ = γ−1

y for all y and γy = 1 for y ∈ T .

Now if σ(y) = 1, then

o(jy) = t(jȳ) = γȳjt(ȳ) = γ−1
y jo(y),

t(jy) = o(jȳ) = jo(ȳ) = jt(y).

Hence we see that for all y,

o(jy) = γ−σ(y)
y jo(y),

t(jy) = γ1−σ(y)
y jt(y).

Remark. This is starting to look a lot like the definition of X̃ in the previous section, with j taking the role
of the sections P 7→ P̃ , y 7→ ỹ. This is not a coincidence, since we are defining the opposite construction from
X̃: instead of starting with a graph of groups and obtaining a graph with an action, we start with an action
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on a graph and are defining the corresponding graph of groups.
The choice we made here in saying that o(jy) ∈ jT is the same choice as we made in the definition of X̃ by
saying that πỹ = Gww. We will see that this is enough to make the two constructions inverse to each other
(Theorem 4).

For Q ∈ V(X), z ∈ E(X) let their stabilisers in G be GQ, Gz. We define (G, Y ) by setting

GP = GjP for P ∈ V(Y ),

Gy = Gjy for y ∈ E(Y ),

Gy → Gt(y) is a 7→ ay = γσ(y)−1
y a γ1−σ(y)

y .

The last expression makes sense since

Gy = Gjy 6 Gt(jy) = G
γ
1−σ(y)
y jt(y)

= γ1−σ(y)
y Gt(y)γ

σ(y)−1
y ,

hence
γσ(y)−1
y Gyγ

1−σ(y)
y 6 Gt(y).

Then if π = π1(G, Y, T ), we can define the homomorphism

φ : π → G

GP ↪→ G

gy 7→ γy

φ is well-defined since for y ∈ T , γy = 1, and for a ∈ Gy,

γya
yγ−1
y = γσ(y)

y aγ−σ(y)
y = γ

σ(ȳ)−1
ȳ a γ

1−σ(ȳ)
ȳ = aȳ.

We can also define the map of graphs
ψ : X̃(G, Y, T )→ X

gP̃ 7→ φ(g)jP

gỹ 7→ φ(g)jy

To check that ψ is a well-defined map of graphs, we need to check that for any edge w = gỹ of X̃ we have
ψ(w̄) = ψ(w) and ψ(o(w)) = o(ψ(w)).
Indeed:

ψ(w̄) = ψ(g ˜̄y) = φ(g)jȳ = φ(g)jy = φ(g)jy = ψ(w)

and
ψ(o(w)) = ψ(gg−σ(y)

y õ(y)) = φ(g)γ−σ(y)
y jo(y) = φ(g)o(jy) = o(φ(g)jy) = o(ψ(w)).

Further ψ is φ-equivariant in the sense that the following diagram commutes for all g ∈ π:

X̃ X̃

X X

g

φ(g)

ψ ψ
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Note that by definition of φ, it maps πP̃ isomorphically onto GjP . Since the stabilisers of other vertices are

related to these by conjugation, we see that for all vertices Q of X̃, φ restricts to isomorphisms between
stabilisers πQ (of Q in X̃) and Gψ(Q) (of ψ(Q) in X).

Now we shall show that φ is surjective, by constructing a subgroup H of φ(π) for which we can show that
H = G.
Let z be an edge of X with origin in jT . Then if it projects to y in Y , there is a g ∈ G such that gz = jy.

Since o(z), o(jy) ∈ jT , o(z) = o(jy), hence g ∈ Go(z). Since t(jy) = γ
1−σ(y)
y jt(y), the edge γ

σ(y)−1
y jy ends in

jT . So if hz = γ
σ(y)−1
y g, then hzz ends in jT .

Let H be the subgroup of G generated by {GjP : P ∈ V(Y )} and {hz : o(z) ∈ jT}. Then H lies in φ(π), as
GjP = φ(πP̃ ) and γy = φ(gy).

Lemma 4. If H is as defined above, then H = G. Hence φ is surjective.

Proof. As V(X) =
⊔
g∈G V(g · jT ), it suffices to show that H ·V(jT ) = V(X).

Consider W , the smallest subgraph of X containing jy for all y ∈ E(Y ). Then as Y = G\X, G ·W = X.

We know that V(W ) ⊂ H · V(jT ): if Q is a vertex of W that is not a vertex of jT , then there is an edge z
such that o(z) ∈ jT , t(z) = Q. But hz ∈ H and hzQ = t(hzz) ∈ jT .
Hence it suffices to show that H ·W = X. As X is connected, it is enough to show that every edge of X
starting in H ·W is contained in H ·W .

Let w be an edge of X with o(w) ∈ H ·W . We can translate by an element of H to make sure that Q = t(w)
lies in jT . Since G ·W = X, there is a g ∈ G such that z = gw lies in W . We shall show that g ∈ H, this
implies that w ∈ g−1W ⊂ H ·W .

Since z ∈W , either o(z) ∈ jT or t(z) ∈ jT .
Case (i): If o(z) ∈ jT , hz ∈ H and hzz ends in jT , so hzt(z) = hzgQ and Q both lie in jT . This implies that

Q = hzgQ, so g ∈ h−1
z GQ ⊂ H.

Case (ii): If t(z) ∈ jT , then t(gw) = Q = t(w), so g ∈ GQ ⊂ H.

Definition 13. A map of graphs f is locally injective if for every vertex P it is injective on the set of edges
with origin at P .

Lemma 5. ψ is locally injective.

Proof. For two edges z1 = g1ỹ1, z2 = g2ỹ2 of X̃, if ψ(z1) = ψ(z2), then jy1 and jy2 belong to the same G-orbit
in X, so y1 = y2.

Then consider two edges z1 = g1ỹ, z2 = g2ỹ with the same origin Q. If ψ(z1) = ψ(z2), then φ(g1) = φ(g2).
Now, as o(g1ỹ) = o(g2ỹ) = Q, g−1

1 g2 ∈ GQ. But φ restricts to an isomorphism on GQ and φ(g−1
1 g2) = 1, hence

g1 = g2, so z1 = z2.

Thus ψ is locally injective.
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Theorem 4. Suppose G acts on a connected non-empty graph X. Let Y = G\X, T a maximal tree of Y .
Define (G, Y, T ), X̃ as above, along with the maps ψ and φ. Then the following are equivalent:

(1) X is a tree.

(2) ψ : X̃ → X is an isomorphism

(3) φ : π1(G, Y, T )→ G is an isomorphism.

Proof.
(2) =⇒ (1): We know from Theorem 3 that X̃ is a tree.
(3) =⇒ (2): If ψ(g1P̃1) = ψ(g2P̃2), then φ(g1)jP1 = φ2jP2, so jP1 and jP2 are in the same G-orbit,

hence P1 = P2. Then as φ is an isomorphism, g1 = g2. Hence ψ is injective, and so as it is
also surjective (Lemma 4), it is an isomorphism.

(1) =⇒ (2): We know from Lemmas 4 and 5 that ψ is surjective and locally injective. Hence it suffices
to show that a locally injective map into a tree is injective.
Indeed, suppose Q1 6= Q2 but ψ(Q1) = ψ(Q2). As X̃ is connected, there is a path c =
(z1, ..., zn) without backtracking from Q1 to Q2 in X̃. The ψ(c) is a closed path in X, so as
X is a tree, it must have a backtracking ψ(zi+1) = ψ(zi). But then ψ is not locally injective
at Q′ = t(zi) as z̄i and zi+1 are distinct edges with origin at Q′ that have the same image
under ψ. We get a contradiction, hence ψ is injective.

(2) =⇒ (3): Let N = kerφ, P a vertex of Y . We know that φ restricts to an isomorphism on GP̃ , so

GP̃ ∩ N = {1}. Suppose n ∈ N, n 6= 1. Then P̃ 6= nP̃ in X̃ but ψ(P̃ ) = jP = ψ(nP̃ ).
Hence if φ is not an isomorphism, then ψ is not either.

Note that the implication (1) =⇒ (3) gives a structure theorem for groups acting on trees: G is generated
by the stabilisers GP for P ∈ V(Y ) and the elements γy for y ∈ E(Y ), subject to relations γy = 1 for y ∈ T
and γya

yγ−1
y = aȳ for an appropriate definition of the inclusions a 7→ ay.

Example: Let X be the tree with vertices Z× {−1, 0,+1}, and positively oriented edges from (n, 0) to
(n+ 1, 0), (n,−1), (n,+1) for all n ∈ Z.

......
(n, 0) (n+ 1, 0)

(n,+1)

(n,−1)

Figure 9: Tree X.

Let s be the shift automorphism of X, mapping the vertex (n, b) onto (n+ 1, b).
Let r be the reflection automorphism, which switches (0,+1) and (0,−1), and fixes all other vertices.
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Then G = 〈s, r〉 acts on X without inversion. Then Y = G\X has two vertices P and Q (corresponding to
the orbits of jP = (0, 0) and jQ = (0,+1)), and two edges, y and z (corresponding to the orbits of jy from
jP to (1, 0) and jz from jP to jQ). The maximal tree T of Y consists of P,Q and z.

......
jP

jQ

jz

jy

Q
y

P

z

X Y

Figure 10: The quotient graph Y and the section j.

If rn = snrs−n is the automorphism that interchanges (n,+1) and (n,−1), then we can see that the stabiliser
of jP (and also of jy) is the Cartesian product ×n∈Z 〈rn〉. Similarly, the stabiliser of jQ and also of jz is
×n∈Z, n 6=0 〈rn〉.

We can see that γy = s, and the maps a 7→ ay, a 7→ aȳ are defined by ryn = rn−1, r
ȳ
n = rn.

Hence by Theorem 4 we see that another presentation for G is

G = 〈γy, rn for n ∈ Z | r2
n = 1, γyrnγ

−1
y = rn+1〉.
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Birkhäuser, Basel, 1993.

[2] Allen Hatcher. Algebraic Topology. Cambridge Univ. Press, Cambridge, 2002.

[3] Peter Scott and Terry Wall. Topological methods in group theory. In Homological Group Theory, volume 36
of LMS Lecture Note Series, pages 137–203. Cambridge Univ. Press, Cambridge, 1979.

[4] Jean-Pierre Serre. Trees. Springer-Verlag, Berlin, Heidelberg, 1980. Translated from the French by John
Stillwell.

24


